-
Notifications
You must be signed in to change notification settings - Fork 10
/
count-of-smaller-numbers-after-self.cpp
162 lines (148 loc) · 4.71 KB
/
count-of-smaller-numbers-after-self.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// Time: O(nlogn)
// Space: O(n)
// BST solution. (40ms)
class Solution {
public:
class BSTreeNode {
public:
int val, count;
BSTreeNode *left, *right;
BSTreeNode(int val, int count) {
this->val = val;
this->count = count;
this->left = this->right = nullptr;
}
};
vector<int> countSmaller(vector<int>& nums) {
vector<int> res(nums.size());
BSTreeNode *root = nullptr;
// Insert into BST and get left count.
for (int i = nums.size() - 1; i >= 0; --i) {
BSTreeNode *node = new BSTreeNode(nums[i], 0);
root = insertNode(root, node);
res[i] = query(root, nums[i]);
}
return res;
}
// Insert node into BST.
BSTreeNode* insertNode(BSTreeNode* root, BSTreeNode* node) {
if (root == nullptr) {
return node;
}
BSTreeNode* curr = root;
while (curr) {
// Insert left if smaller.
if (node->val < curr->val) {
++curr->count; // Increase the number of left children.
if (curr->left != nullptr) {
curr = curr->left;
} else {
curr->left = node;
break;
}
} else { // Insert right if larger or equal.
if (curr->right != nullptr) {
curr = curr->right;
} else {
curr->right = node;
break;
}
}
}
return root;
}
// Query the smaller count of the value.
int query(BSTreeNode* root, int val) {
if (root == nullptr) {
return 0;
}
int count = 0;
BSTreeNode* curr = root;
while (curr) {
// Insert left.
if (val < curr->val) {
curr = curr->left;
} else if (val > curr->val) {
count += 1 + curr->count; // Count the number of the smaller nodes.
curr = curr->right;
} else { // Equal.
return count + curr->count;
}
}
return 0;
}
};
// Time: O(nlogn)
// Space: O(n)
// BIT solution. (56ms)
class Solution2 {
public:
vector<int> countSmaller(vector<int>& nums) {
// Get the place (position in the ascending order) of each number.
vector<int> sorted_nums(nums), places(nums.size());
sort(sorted_nums.begin(), sorted_nums.end());
for (int i = 0; i < nums.size(); ++i) {
places[i] =
lower_bound(sorted_nums.begin(), sorted_nums.end(), nums[i]) -
sorted_nums.begin();
}
// Count the smaller elements after the number.
vector<int> bit(nums.size() + 1), ans(nums.size());
for (int i = nums.size() - 1; i >= 0; --i) {
ans[i] = query(bit, places[i]);
add(bit, places[i] + 1, 1);
}
return ans;
}
private:
void add(vector<int>& bit, int i, int val) {
for (; i < bit.size(); i += lower_bit(i)) {
bit[i] += val;
}
}
int query(const vector<int>& bit, int i) {
int sum = 0;
for (; i > 0; i -= lower_bit(i)) {
sum += bit[i];
}
return sum;
}
int lower_bit(int i) {
return i & -i;
}
};
// Time: O(nlogn)
// Space: O(n)
// Divide and Conquer solution. (80ms)
class Solution3 {
public:
vector<int> countSmaller(vector<int>& nums) {
vector<int> counts(nums.size());
vector<pair<int, int>> num_idxs;
for (int i = 0; i < nums.size(); ++i) {
num_idxs.emplace_back(nums[i], i);
}
countAndMergeSort(&num_idxs, 0, num_idxs.size() - 1, &counts);
return counts;
}
void countAndMergeSort(vector<pair<int, int>> *num_idxs, int start, int end, vector<int> *counts) {
if (end - start <= 0) { // The number of range [start, end] of which size is less than 2 doesn't need sort.
return;
}
int mid = start + (end - start) / 2;
countAndMergeSort(num_idxs, start, mid, counts);
countAndMergeSort(num_idxs, mid + 1, end, counts);
int r = mid + 1;
vector<pair<int, int>> tmp;
for (int i = start; i <= mid; ++i) {
// Merge the two sorted arrays into tmp.
while (r <= end && (*num_idxs)[r].first < (*num_idxs)[i].first) {
tmp.emplace_back((*num_idxs)[r++]);
}
tmp.emplace_back((*num_idxs)[i]);
(*counts)[(*num_idxs)[i].second] += r - (mid + 1);
}
// Copy tmp back to num_idxs.
copy(tmp.begin(), tmp.end(), num_idxs->begin() + start);
}
};