-
Notifications
You must be signed in to change notification settings - Fork 10
/
falling-squares.py
248 lines (226 loc) · 7.48 KB
/
falling-squares.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# Time: O(nlogn)
# Space: O(n)
# On an infinite number line (x-axis), we drop given squares in the order they are given.
#
# The i-th square dropped (positions[i] = (left, side_length)) is a square
# with the left-most point being positions[i][0] and sidelength positions[i][1].
#
# The square is dropped with the bottom edge parallel to the number line,
# and from a higher height than all currently landed squares.
# We wait for each square to stick before dropping the next.
#
# The squares are infinitely sticky on their bottom edge, and will remain fixed
# to any positive length surface they touch (either the number line or another square).
# Squares dropped adjacent to each other will not stick together prematurely.
#
# Return a list ans of heights. Each height ans[i] represents the current highest height
# of any square we have dropped, after dropping squares represented by positions[0], positions[1], ..., positions[i].
#
# Example 1:
# Input: [[1, 2], [2, 3], [6, 1]]
# Output: [2, 5, 5]
# Explanation:
#
# After the first drop of
# positions[0] = [1, 2]:
# _aa
# _aa
# -------
# The maximum height of any square is 2.
#
# After the second drop of
# positions[1] = [2, 3]:
# __aaa
# __aaa
# __aaa
# _aa__
# _aa__
# --------------
# The maximum height of any square is 5.
# The larger square stays on top of the smaller square despite where its center
# of gravity is, because squares are infinitely sticky on their bottom edge.
#
# After the third drop of
# positions[1] = [6, 1]:
# __aaa
# __aaa
# __aaa
# _aa
# _aa___a
# --------------
# The maximum height of any square is still 5.
#
# Thus, we return an answer of
# [2, 5, 5]
# .
#
# Example 2:
# Input: [[100, 100], [200, 100]]
# Output: [100, 100]
# Explanation: Adjacent squares don't get stuck prematurely - only their bottom edge can stick to surfaces.
# Note:
#
# 1 <= positions.length <= 1000.
# 1 <= positions[0] <= 10^8.
# 1 <= positions[1] <= 10^6.
# Time: O(nlogn) ~ O(n^2)
# Space: O(n)
import bisect
class Solution(object):
def fallingSquares(self, positions):
result = []
pos = [-1]
heights = [0]
maxH = 0
for left, side in positions:
l = bisect.bisect_right(pos, left)
r = bisect.bisect_left(pos, left+side)
high = max(heights[l-1:r] or [0]) + side
pos[l:r] = [left, left+side] # Time: O(n)
heights[l:r] = [high, heights[r-1]] # Time: O(n)
maxH = max(maxH, high)
result.append(maxH)
return result
class SegmentTree(object):
def __init__(self, N, update_fn, query_fn):
self.N = N
self.H = 1
while (1 << self.H) < N:
self.H += 1
self.update_fn = update_fn
self.query_fn = query_fn
self.tree = [0] * (2 * N)
self.lazy = [0] * N
def __apply(self, x, val):
self.tree[x] = self.update_fn(self.tree[x], val)
if x < self.N:
self.lazy[x] = self.update_fn(self.lazy[x], val)
def __pull(self, x):
while x > 1:
x /= 2
self.tree[x] = self.query_fn(self.tree[x*2], self.tree[x*2 + 1])
self.tree[x] = self.update_fn(self.tree[x], self.lazy[x])
def __push(self, x):
for h in xrange(self.H, 0, -1):
y = x >> h
if self.lazy[y]:
self.__apply(y*2, self.lazy[y])
self.__apply(y*2 + 1, self.lazy[y])
self.lazy[y] = 0
def update(self, L, R, h):
L += self.N
R += self.N
L0, R0 = L, R
while L <= R:
if L & 1:
self.__apply(L, h)
L += 1
if R & 1 == 0:
self.__apply(R, h)
R -= 1
L /= 2; R /= 2
self.__pull(L0)
self.__pull(R0)
def query(self, L, R):
L += self.N
R += self.N
self.__push(L); self.__push(R)
result = 0
while L <= R:
if L & 1:
result = self.query_fn(result, self.tree[L])
L += 1
if R & 1 == 0:
result = self.query_fn(result, self.tree[R])
R -= 1
L /= 2; R /= 2
return result
# Time: O(nlogn)
# Space: O(n)
# Segment Tree solution.
class Solution2(object):
def fallingSquares(self, positions):
index = set()
for left, size in positions:
index.add(left);
index.add(left+size-1)
index = sorted(list(index))
tree = SegmentTree(len(index), max, max)
max_height = 0
result = []
for left, size in positions:
L, R = bisect.bisect_left(index, left), bisect.bisect_left(index, left+size-1)
h = tree.query(L, R) + size
tree.update(L, R, h)
max_height = max(max_height, h)
result.append(max_height)
return result
# Time: O(n * sqrt(n))
# Space: O(n)
class Solution3(object):
def fallingSquares(self, positions):
def query(heights, left, right, B, blocks, blocks_read):
result = 0
while left % B and left <= right:
result = max(result, heights[left], blocks[left//B])
left += 1
while right % B != B-1 and left <= right:
result = max(result, heights[right], blocks[right//B])
right -= 1
while left <= right:
result = max(result, blocks[left//B], blocks_read[left//B])
left += B
return result
def update(heights, left, right, B, blocks, blocks_read, h):
while left % B and left <= right:
heights[left] = max(heights[left], h)
blocks_read[left//B] = max(blocks_read[left//B], h)
left += 1
while right % B != B-1 and left <= right:
heights[right] = max(heights[right], h)
blocks_read[right//B] = max(blocks_read[right//B], h)
right -= 1
while left <= right:
blocks[left//B] = max(blocks[left//B], h)
left += B
index = set()
for left, size in positions:
index.add(left);
index.add(left+size-1)
index = sorted(list(index))
W = len(index)
B = int(W**.5)
heights = [0] * W
blocks = [0] * (B+2)
blocks_read = [0] * (B+2)
max_height = 0
result = []
for left, size in positions:
L, R = bisect.bisect_left(index, left), bisect.bisect_left(index, left+size-1)
h = query(heights, L, R, B, blocks, blocks_read) + size
update(heights, L, R, B, blocks, blocks_read, h)
max_height = max(max_height, h)
result.append(max_height)
return result
# Time: O(n^2)
# Space: O(n)
class Solution4(object):
def fallingSquares(self, positions):
"""
:type positions: List[List[int]]
:rtype: List[int]
"""
heights = [0] * len(positions)
for i in xrange(len(positions)):
left_i, size_i = positions[i]
right_i = left_i + size_i
heights[i] += size_i
for j in xrange(i+1, len(positions)):
left_j, size_j = positions[j]
right_j = left_j + size_j
if left_j < right_i and left_i < right_j: # intersect
heights[j] = max(heights[j], heights[i])
result = []
for height in heights:
result.append(max(result[-1], height) if result else height)
return result