-
Notifications
You must be signed in to change notification settings - Fork 10
/
maximum-sum-of-3-non-overlapping-subarrays.py
62 lines (57 loc) · 2 KB
/
maximum-sum-of-3-non-overlapping-subarrays.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Time: O(n)
# Space: O(n)
# In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum.
#
# Each subarray will be of size k, and we want to maximize the sum of all 3*k entries.
#
# Return the result as a list of indices representing the starting position of each interval (0-indexed).
# If there are multiple answers, return the lexicographically smallest one.
#
# Example:
# Input: [1,2,1,2,6,7,5,1], 2
# Output: [0, 3, 5]
#
# Explanation: Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5].
# We could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographically larger.
#
# Note:
# - nums.length will be between 1 and 20000.
# - nums[i] will be between 1 and 65535.
# - k will be between 1 and floor(nums.length / 3).
class Solution(object):
def maxSumOfThreeSubarrays(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: List[int]
"""
n = len(nums)
accu = [0]
for num in nums:
accu.append(accu[-1]+num)
left_pos = [0] * n
total = accu[k]-accu[0]
for i in xrange(k, n):
if accu[i+1]-accu[i+1-k] > total:
left_pos[i] = i+1-k
total = accu[i+1]-accu[i+1-k]
else:
left_pos[i] = left_pos[i-1]
right_pos = [n-k] * n
total = accu[n]-accu[n-k]
for i in reversed(xrange(n-k)):
if accu[i+k]-accu[i] > total:
right_pos[i] = i;
total = accu[i+k]-accu[i]
else:
right_pos[i] = right_pos[i+1]
result, max_sum = [], 0
for i in xrange(k, n-2*k+1):
left, right = left_pos[i-1], right_pos[i+k]
total = (accu[i+k]-accu[i]) + \
(accu[left+k]-accu[left]) + \
(accu[right+k]-accu[right])
if total > max_sum:
max_sum = total
result = [left, i, right]
return result