-
Notifications
You must be signed in to change notification settings - Fork 10
/
palindrome-partitioning.py
71 lines (63 loc) · 1.98 KB
/
palindrome-partitioning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from __future__ import print_function
# Time: O(n^2 ~ 2^n)
# Space: O(n^2)
#
# Given a string s, partition s such that every substring of the partition is a palindrome.
#
# Return all possible palindrome partitioning of s.
#
# For example, given s = "aab",
# Return
#
# [
# ["aa","b"],
# ["a","a","b"]
# ]
# Time: O(n^2 ~ 2^n)
# Space: O(n^2)
# dynamic programming solution
class Solution:
# @param s, a string
# @return a list of lists of string
def partition(self, s):
n = len(s)
is_palindrome = [[0 for j in xrange(n)] for i in xrange(n)]
for i in reversed(xrange(0, n)):
for j in xrange(i, n):
is_palindrome[i][j] = s[i] == s[j] and ((j - i < 2 ) or is_palindrome[i + 1][j - 1])
sub_partition = [[] for i in xrange(n)]
for i in reversed(xrange(n)):
for j in xrange(i, n):
if is_palindrome[i][j]:
if j + 1 < n:
for p in sub_partition[j + 1]:
sub_partition[i].append([s[i:j + 1]] + p)
else:
sub_partition[i].append([s[i:j + 1]])
return sub_partition[0]
# Time: O(2^n)
# Space: O(n)
# recursive solution
class Solution2:
# @param s, a string
# @return a list of lists of string
def partition(self, s):
result = []
self.partitionRecu(result, [], s, 0)
return result
def partitionRecu(self, result, cur, s, i):
if i == len(s):
result.append(list(cur))
else:
for j in xrange(i, len(s)):
if self.isPalindrome(s[i: j + 1]):
cur.append(s[i: j + 1])
self.partitionRecu(result, cur, s, j + 1)
cur.pop()
def isPalindrome(self, s):
for i in xrange(len(s) / 2):
if s[i] != s[-(i + 1)]:
return False
return True
if __name__ == "__main__":
print(Solution().partition("aab"))