forked from henghuiding/BFP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoption.py
129 lines (123 loc) · 6.8 KB
/
option.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
###########################################################################
# Created by: NTU EEE
# Email: ding0093@e.ntu.edu.sg
# Copyright (c) 2019
###########################################################################
import os
import argparse
import torch
class Options():
def __init__(self):
parser = argparse.ArgumentParser(description='PyTorch \
Segmentation')
# model and dataset
parser.add_argument('--model', type=str, default='bfp',
help='model name (default: bfp)')
parser.add_argument('--name', type=str, default='UAG',
help='my model name (default: UAG)')
parser.add_argument('--backbone', type=str, default='resnet101',
help='backbone name (default: resnet101)')
parser.add_argument('--dataset', type=str, default='pascalcontext',
help='dataset name (default: pascalcontext)')
parser.add_argument('--data-folder', type=str,
default='datasets/pascalcontext/',
help='training dataset folder (default: \
$(HOME)/data)')
parser.add_argument('--workers', type=int, default=16,
metavar='N', help='dataloader threads')
parser.add_argument('--base-size', type=int, default=608,
help='base image size')
parser.add_argument('--crop-size', type=int, default=576,
help='crop image size')
# training hyper params
parser.add_argument('--aux', action='store_true', default= False,
help='Auxilary Loss')
parser.add_argument('--epochs', type=int, default=None, metavar='N',
help='number of epochs to train (default: auto)')
parser.add_argument('--start_epoch', type=int, default=0,
metavar='N', help='start epochs (default:0)')
parser.add_argument('--batch-size', type=int, default=None,
metavar='N', help='input batch size for \
training (default: auto)')
parser.add_argument('--test-batch-size', type=int, default=None,
metavar='N', help='input batch size for \
testing (default: same as batch size)')
# optimizer params
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (default: auto)')
parser.add_argument('--lr-scheduler', type=str, default='poly',
help='learning rate scheduler (default: poly)')
parser.add_argument('--lr-step', type=int, default=None,
help='lr step to change lr')
parser.add_argument('--momentum', type=float, default=0.9,
metavar='M', help='momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=1e-4,
metavar='M', help='w-decay (default: 1e-4)')
# cuda, seed and logging
parser.add_argument('--no-cuda', action='store_true', default=
False, help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-root', type=str,
default='./log', help='set a log path folder')
# checking point
parser.add_argument('--resume', type=str, default=None,
help='put the path to resuming file if needed')
parser.add_argument('--resume-dir', type=str, default=None,
help='put the path to resuming dir if needed')
parser.add_argument('--checkname', type=str, default='bfp101',
help='set the checkpoint name')
parser.add_argument('--model-zoo', type=str, default=None,
help='evaluating on model zoo model')
# finetuning pre-trained models
parser.add_argument('--ft', action='store_true', default= False,
help='finetuning on a different dataset')
parser.add_argument('--ft-resume', type=str, default=None,
help='put the path of trained model to finetune if needed ')
parser.add_argument('--pre-class', type=int, default=None,
help='num of pre-trained classes \
(default: None)')
# evaluation option
parser.add_argument('--ema', action='store_true', default= False,
help='using EMA evaluation')
parser.add_argument('--eval', action='store_true', default= False,
help='evaluating mIoU')
parser.add_argument('--no-val', action='store_true', default= False,
help='skip validation during training')
# test option
parser.add_argument('--test-folder', type=str, default=None,
help='path to test image folder')
parser.add_argument('--multi-scales',action="store_true", default=True,
help="testing scale,default:1.0(single scale)")
# multi grid dilation option
parser.add_argument("--multi-grid", action="store_true", default=True,
help="use multi grid dilation policy")
parser.add_argument('--multi-dilation', nargs='+', type=int, default=[4, 8, 16],
help="multi grid dilation list")
parser.add_argument('--scale', action='store_false', default=True,
help='choose to use random scale transform(0.75-2),default:multi scale')
# the parser
self.parser = parser
def parse(self):
args = self.parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
# default settings for epochs, batch_size and lr
if args.epochs is None:
epoches = {
'pascalcontext': 180,
'camvid': 100,
'cityscapes': 180,
}
args.epochs = epoches[args.dataset.lower()]
if args.batch_size is None:
args.batch_size = 4 * torch.cuda.device_count()
if args.test_batch_size is None:
args.test_batch_size = args.batch_size
if args.lr is None:
lrs = {
'pascalcontext': 0.001,
'camvid': 0.01,
'cityscapes': 0.01,
}
args.lr = lrs[args.dataset.lower()] / 8 * args.batch_size
return args