-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpretrain.py
123 lines (105 loc) · 4.43 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import argparse
import os
import pprint
import sys
import json
import yaml
import shutil
import time
import logging, json
from pathlib import Path
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TestTubeLogger
from plb.models.self_supervised import TAN
from plb.models.self_supervised.tan import TANEvalDataTransform, TANTrainDataTransform
from plb.datamodules import SeqDataModule
from pytorch_lightning.plugins import DDPPlugin
KEYPOINT_NAME = ["nose", "left_eye", "right_eye", "left_ear", "right_ear",
"left_shoulder", "right_shoulder", "left_elbow", "right_elbow", "left_wrist", "right_wrist",
"left_hip", "right_hip", "left_knee", "right_knee", "left_ankle", "right_ankle"]
def parse_args():
parser = argparse.ArgumentParser(description='Train classification network')
parser.add_argument('--cfg',
help='experiment configure file name',
required=True,
type=str)
parser.add_argument('--data_dir',
help='path to aistplusplus data directory from repo root',
type=str)
parser.add_argument('--seed',
help='seed for this run',
default=1,
type=int)
args, _ = parser.parse_known_args()
pl.utilities.seed.seed_everything(args.seed)
with open(args.cfg, 'r') as stream:
ldd = yaml.safe_load(stream)
if args.data_dir:
ldd["PRETRAIN"]["DATA"]["DATA_DIR"] = args.data_dir
pprint.pprint(ldd)
return ldd
def main():
args = parse_args()
debug = args["NAME"] == "debug"
log_dir = os.path.join("./logs", args["NAME"])
dirpath = Path(log_dir)
dirpath.mkdir(parents=True, exist_ok=True)
timed = time.strftime("%Y%m%d_%H%M%S")
with open(os.path.join(log_dir, f"config_used_{timed}.yaml"), "w") as stream:
yaml.dump(args, stream, default_flow_style=False)
video_dir = os.path.join(log_dir, "saved_videos")
Path(video_dir).mkdir(parents=True, exist_ok=True)
# log
tt_logger = TestTubeLogger(
save_dir=log_dir,
name="default",
debug=False,
create_git_tag=False
)
# trainer
trainer = pl.Trainer(
gpus=args["PRETRAIN"]["GPUS"],
check_val_every_n_epoch=args["PRETRAIN"]["TRAINER"]["VAL_STEP"],
logger=tt_logger,
accelerator=args["PRETRAIN"]["TRAINER"]["ACCELERATOR"],
max_epochs=args["PRETRAIN"]["EPOCH"],
gradient_clip_val=0.5,
num_sanity_val_steps=0,
plugins=DDPPlugin(find_unused_parameters=False),
)
j = 17
dm = SeqDataModule(**args["PRETRAIN"]["DATA"])
transform_args = {"min_length": args["PRETRAIN"]["DATA"]["MIN_LENGTH"],
"max_length": args["PRETRAIN"]["DATA"]["MAX_LENGTH"],
"aug_shift_prob": args["PRETRAIN"]["DATA"]["AUG_SHIFT_PROB"],
"aug_shift_range": args["PRETRAIN"]["DATA"]["AUG_SHIFT_RANGE"],
"aug_rot_prob": args["PRETRAIN"]["DATA"]["AUG_ROT_PROB"],
"aug_rot_range": args["PRETRAIN"]["DATA"]["AUG_ROT_RANGE"],
"aug_time_prob": args["PRETRAIN"]["DATA"]["AUG_TIME_PROB"],
"aug_time_rate": args["PRETRAIN"]["DATA"]["AUG_TIME_RATE"], }
dm.train_transforms = eval(args["PRETRAIN"]["ALGO"] + "TrainDataTransform")(**transform_args)
dm.val_transforms = eval(args["PRETRAIN"]["ALGO"] + "EvalDataTransform")(**transform_args)
model = eval(args["PRETRAIN"]["ALGO"])(
gpus=args["PRETRAIN"]["GPUS"],
num_samples=dm.num_samples,
batch_size=dm.batch_size,
length=dm.min_length,
dataset=dm.name,
max_epochs=args["PRETRAIN"]["EPOCH"],
warmup_epochs=args["PRETRAIN"]["WARMUP"],
arch=args["PRETRAIN"]["ARCH"]["ARCH"],
val_configs=args["PRETRAIN"]["VALIDATION"],
learning_rate=float(args["PRETRAIN"]["TRAINER"]["LR"]),
log_dir=log_dir,
protection=args["PRETRAIN"]["PROTECTION"],
optim=args["PRETRAIN"]["TRAINER"]["OPTIM"],
lars_wrapper=args["PRETRAIN"]["TRAINER"]["LARS"],
tr_layer=args["PRETRAIN"]["ARCH"]["LAYER"],
tr_dim=args["PRETRAIN"]["ARCH"]["DIM"],
neg_dp=args["PRETRAIN"]["ARCH"]["DROPOUT"],
j=j*3,
)
trainer.fit(model, datamodule=dm)
if __name__ == '__main__':
main()