Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

SCD模型在SECOND数据集上训练,验证时,出现了NaN #96

Open
regainOWO opened this issue Apr 26, 2024 · 6 comments
Open

SCD模型在SECOND数据集上训练,验证时,出现了NaN #96

regainOWO opened this issue Apr 26, 2024 · 6 comments

Comments

@regainOWO
Copy link

环境:

  • python: 3.9.0
  • torch: 1.10.1
  • mmcv: 2.1.0
  • mmsegmentation: 1.2.2
  • opencd: 1.1.0
    scd_upernet在SECOND数据集上训练,但在验证的时候分数为NaN。
    log日志如下:
2024/04/26 10:57:47 - mmengine - INFO - 
------------------------------------------------------------
System environment:
    sys.platform: linux
    Python: 3.9.0 (default, Nov 15 2020, 14:28:56) [GCC 7.3.0]
    CUDA available: True
    MUSA available: False
    numpy_random_seed: 1381265969
    GPU 0: NVIDIA A10
    CUDA_HOME: /usr/local/cuda-11.8
    NVCC: Cuda compilation tools, release 11.8, V11.8.89
    GCC: gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
    PyTorch: 2.0.1+cu118
    PyTorch compiling details: PyTorch built with:
  - GCC 9.3
  - C++ Version: 201703
  - Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 11.8
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
  - CuDNN 8.7
  - Magma 2.6.1
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, 

    TorchVision: 0.15.2+cu118
    OpenCV: 4.9.0
    MMEngine: 0.10.4

Runtime environment:
    cudnn_benchmark: True
    mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
    dist_cfg: {'backend': 'nccl'}
    seed: 1381265969
    Distributed launcher: none
    Distributed training: False
    GPU number: 1
------------------------------------------------------------

2024/04/26 10:57:47 - mmengine - INFO - Config:
crop_size = (
    256,
    384,
)
data_preprocessor = dict(
    bgr_to_rgb=True,
    mean=[
        123.675,
        116.28,
        103.53,
        123.675,
        116.28,
        103.53,
    ],
    pad_val=0,
    seg_pad_val=255,
    size_divisor=32,
    std=[
        58.395,
        57.12,
        57.375,
        58.395,
        57.12,
        57.375,
    ],
    test_cfg=dict(size_divisor=32),
    type='DualInputSegDataPreProcessor')
data_root = '/home/teslaa10/桌面/MambaCD/data/SECOND'
dataset_type = 'SECOND_Dataset'
default_hooks = dict(
    checkpoint=dict(by_epoch=False, interval=4000, type='CheckpointHook'),
    logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'),
    param_scheduler=dict(type='ParamSchedulerHook'),
    sampler_seed=dict(type='DistSamplerSeedHook'),
    timer=dict(type='IterTimerHook'),
    visualization=dict(
        draw_on_from_to_img=False, interval=1, type='CDVisualizationHook'))
default_scope = 'opencd'
env_cfg = dict(
    cudnn_benchmark=True,
    dist_cfg=dict(backend='nccl'),
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
launcher = 'none'
load_from = None
log_level = 'INFO'
log_processor = dict(by_epoch=False)
model = dict(
    backbone=dict(
        contract_dilation=True,
        depth=18,
        dilations=(
            1,
            1,
            1,
            1,
        ),
        norm_cfg=dict(requires_grad=True, type='SyncBN'),
        norm_eval=False,
        num_stages=4,
        out_indices=(
            0,
            1,
            2,
            3,
        ),
        strides=(
            1,
            2,
            2,
            2,
        ),
        style='pytorch',
        type='mmseg.ResNetV1c'),
    data_preprocessor=dict(
        bgr_to_rgb=True,
        mean=[
            123.675,
            116.28,
            103.53,
            123.675,
            116.28,
            103.53,
        ],
        pad_val=0,
        seg_pad_val=255,
        size_divisor=32,
        std=[
            58.395,
            57.12,
            57.375,
            58.395,
            57.12,
            57.375,
        ],
        test_cfg=dict(size_divisor=32),
        type='DualInputSegDataPreProcessor'),
    decode_head=dict(
        binary_cd_head=dict(
            align_corners=False,
            channels=64,
            dropout_ratio=0.1,
            in_channels=[
                64,
                128,
                256,
                512,
            ],
            in_index=[
                0,
                1,
                2,
                3,
            ],
            loss_decode=dict(
                loss_weight=1.0,
                type='mmseg.CrossEntropyLoss',
                use_sigmoid=False),
            norm_cfg=dict(requires_grad=True, type='SyncBN'),
            num_classes=2,
            pool_scales=(
                1,
                2,
                3,
                6,
            ),
            type='mmseg.UPerHead'),
        binary_cd_neck=dict(policy='abs_diff', type='FeatureFusionNeck'),
        semantic_cd_head=dict(
            align_corners=False,
            channels=64,
            dropout_ratio=0.1,
            ignore_index=255,
            in_channels=[
                64,
                128,
                256,
                512,
            ],
            in_index=[
                0,
                1,
                2,
                3,
            ],
            loss_decode=dict(
                avg_non_ignore=True,
                loss_weight=1.0,
                type='mmseg.CrossEntropyLoss',
                use_sigmoid=False),
            norm_cfg=dict(requires_grad=True, type='SyncBN'),
            num_classes=6,
            pool_scales=(
                1,
                2,
                3,
                6,
            ),
            type='mmseg.UPerHead'),
        type='GeneralSCDHead'),
    postprocess_pred_and_label='cover_semantic',
    pretrained='open-mmlab://resnet18_v1c',
    test_cfg=dict(mode='whole'),
    train_cfg=dict(),
    type='SiamEncoderMultiDecoder')
norm_cfg = dict(requires_grad=True, type='SyncBN')
optim_wrapper = dict(
    optimizer=dict(
        betas=(
            0.9,
            0.999,
        ), lr=0.001, type='AdamW', weight_decay=0.05),
    paramwise_cfg=dict(custom_keys=dict(head=dict(lr_mult=10.0))),
    type='OptimWrapper')
optimizer = dict(
    betas=(
        0.9,
        0.999,
    ),
    lr=0.001,
    momentum=0.9,
    type='AdamW',
    weight_decay=0.05)
param_scheduler = [
    dict(
        begin=0,
        by_epoch=False,
        end=40000,
        eta_min=0.0001,
        power=0.9,
        type='PolyLR'),
]
resume = False
test_cfg = dict(type='TestLoop')
test_dataloader = dict(
    batch_size=1,
    dataset=dict(
        data_prefix=dict(
            img_path_from='val/im1',
            img_path_to='val/im2',
            seg_map_path='val/label',
            seg_map_path_from='val/label1',
            seg_map_path_to='val/label2'),
        data_root='/home/teslaa10/桌面/MambaCD/data/SECOND',
        pipeline=[
            dict(type='MultiImgLoadImageFromFile'),
            dict(keep_ratio=True, scale=(
                512,
                512,
            ), type='MultiImgResize'),
            dict(type='MultiImgMultiAnnLoadAnnotations'),
            dict(type='MultiImgPackSegInputs'),
        ],
        type='SECOND_Dataset'),
    num_workers=4,
    persistent_workers=True,
    sampler=dict(shuffle=False, type='DefaultSampler'))
test_evaluator = dict(
    cal_sek=True, iou_metrics=[
        'mFscore',
        'mIoU',
    ], type='SCDMetric')
test_pipeline = [
    dict(type='MultiImgLoadImageFromFile'),
    dict(keep_ratio=True, scale=(
        512,
        512,
    ), type='MultiImgResize'),
    dict(type='MultiImgMultiAnnLoadAnnotations'),
    dict(type='MultiImgPackSegInputs'),
]
train_cfg = dict(max_iters=40000, type='IterBasedTrainLoop', val_interval=4000)
train_dataloader = dict(
    batch_size=32,
    dataset=dict(
        data_prefix=dict(
            img_path_from='train/im1',
            img_path_to='train/im2',
            seg_map_path='train/label_reverse',
            seg_map_path_from='train/label1',
            seg_map_path_to='train/label2'),
        data_root='/home/teslaa10/桌面/MambaCD/data/SECOND',
        pipeline=[
            dict(type='MultiImgLoadImageFromFile'),
            dict(type='MultiImgMultiAnnLoadAnnotations'),
            dict(
                cat_max_ratio=0.75,
                crop_size=(
                    256,
                    384,
                ),
                type='MultiImgRandomCrop'),
            dict(prob=0.5, type='MultiImgRandomFlip'),
            dict(type='MultiImgPackSegInputs'),
        ],
        type='SECOND_Dataset'),
    num_workers=4,
    persistent_workers=True,
    sampler=dict(shuffle=True, type='InfiniteSampler'))
train_pipeline = [
    dict(type='MultiImgLoadImageFromFile'),
    dict(type='MultiImgMultiAnnLoadAnnotations'),
    dict(
        cat_max_ratio=0.75, crop_size=(
            256,
            384,
        ), type='MultiImgRandomCrop'),
    dict(prob=0.5, type='MultiImgRandomFlip'),
    dict(type='MultiImgPackSegInputs'),
]
tta_model = dict(type='mmseg.SegTTAModel')
val_cfg = dict(type='ValLoop')
val_dataloader = dict(
    batch_size=1,
    dataset=dict(
        data_prefix=dict(
            img_path_from='train/im1',
            img_path_to='train/im2',
            seg_map_path='train/label_reverse',
            seg_map_path_from='train/label1',
            seg_map_path_to='train/label2'),
        data_root='/home/teslaa10/桌面/MambaCD/data/SECOND',
        pipeline=[
            dict(type='MultiImgLoadImageFromFile'),
            dict(keep_ratio=True, scale=(
                512,
                512,
            ), type='MultiImgResize'),
            dict(type='MultiImgMultiAnnLoadAnnotations'),
            dict(type='MultiImgPackSegInputs'),
        ],
        type='SECOND_Dataset'),
    num_workers=4,
    persistent_workers=True,
    sampler=dict(shuffle=False, type='DefaultSampler'))
val_evaluator = dict(
    cal_sek=True, iou_metrics=[
        'mFscore',
        'mIoU',
    ], type='SCDMetric')
vis_backends = [
    dict(type='CDLocalVisBackend'),
]
visualizer = dict(
    alpha=1.0,
    name='visualizer',
    type='CDLocalVisualizer',
    vis_backends=[
        dict(type='CDLocalVisBackend'),
    ])
work_dir = 'runs/second_reverse'

2024/04/26 10:57:49 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used.
2024/04/26 10:57:49 - mmengine - INFO - Hooks will be executed in the following order:
........

decode_head.semantic_cd_head.fpn_bottleneck.bn.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of SiamEncoderMultiDecoder  
2024/04/26 10:57:51 - mmengine - WARNING - "FileClient" will be deprecated in future. Please use io functions in https://mmengine.readthedocs.io/en/latest/api/fileio.html#file-io
2024/04/26 10:57:51 - mmengine - WARNING - "HardDiskBackend" is the alias of "LocalBackend" and the former will be deprecated in future.
2024/04/26 10:57:51 - mmengine - INFO - Checkpoints will be saved to /home/teslaa10/桌面/open-cd/runs/second_reverse.
2024/04/26 10:58:29 - mmengine - INFO - Iter(train) [   50/40000]  base_lr: 9.9901e-04 lr: 9.9901e-04  eta: 8:25:25  time: 0.6564  data_time: 0.0347  memory: 6374  loss: 1.6423  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.8324  decode.semantic_cd_from.acc_seg: 62.0327  decode.semantic_cd_to.loss_ce: 0.8098  decode.semantic_cd_to.acc_seg: 79.0120
2024/04/26 10:58:57 - mmengine - INFO - Exp name: scd_upernet_r18_256x512_40k_custom_second_reverse_20240426_105747
2024/04/26 10:59:01 - mmengine - INFO - Iter(train) [  100/40000]  base_lr: 9.9799e-04 lr: 9.9799e-04  eta: 7:50:14  time: 0.6519  data_time: 0.0240  memory: 6218  loss: 1.5679  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.8580  decode.semantic_cd_from.acc_seg: 78.4337  decode.semantic_cd_to.loss_ce: 0.7098  decode.semantic_cd_to.acc_seg: 74.9893
2024/04/26 10:59:34 - mmengine - INFO - Iter(train) [  150/40000]  base_lr: 9.9698e-04 lr: 9.9698e-04  eta: 7:37:30  time: 0.6555  data_time: 0.0333  memory: 6214  loss: 1.5296  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.7733  decode.semantic_cd_from.acc_seg: 68.5549  decode.semantic_cd_to.loss_ce: 0.7563  decode.semantic_cd_to.acc_seg: 75.5639
2024/04/26 11:00:06 - mmengine - INFO - Iter(train) [  200/40000]  base_lr: 9.9597e-04 lr: 9.9597e-04  eta: 7:30:32  time: 0.6514  data_time: 0.0246  memory: 6220  loss: 1.4951  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.7925  decode.semantic_cd_from.acc_seg: 68.0908  decode.semantic_cd_to.loss_ce: 0.7026  decode.semantic_cd_to.acc_seg: 70.9616
2024/04/26 11:00:40 - mmengine - INFO - Iter(train) [  250/40000]  base_lr: 9.9496e-04 lr: 9.9496e-04  eta: 7:27:47  time: 0.6605  data_time: 0.0336  memory: 6216  loss: 1.4491  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.7545  decode.semantic_cd_from.acc_seg: 67.9426  decode.semantic_cd_to.loss_ce: 0.6945  decode.semantic_cd_to.acc_seg: 74.8863
2024/04/26 11:01:12 - mmengine - INFO - Iter(train) [  300/40000]  base_lr: 9.9394e-04 lr: 9.9394e-04  eta: 7:24:43  time: 0.6501  data_time: 0.0254  memory: 6218  loss: 1.4242  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.7940  decode.semantic_cd_from.acc_seg: 73.8835  decode.semantic_cd_to.loss_ce: 0.6302  decode.semantic_cd_to.acc_seg: 73.2641
2024/04/26 11:01:45 - mmengine - INFO - Iter(train) [  350/40000]  base_lr: 9.9293e-04 lr: 9.9293e-04  eta: 7:22:15  time: 0.6375  data_time: 0.0326  memory: 6216  loss: 1.3852  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6924  decode.semantic_cd_from.acc_seg: 67.3209  decode.semantic_cd_to.loss_ce: 0.6928  decode.semantic_cd_to.acc_seg: 77.4595
2024/04/26 11:02:18 - mmengine - INFO - Iter(train) [  400/40000]  base_lr: 9.9192e-04 lr: 9.9192e-04  eta: 7:20:30  time: 0.6534  data_time: 0.0260  memory: 6217  loss: 1.4094  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.7324  decode.semantic_cd_from.acc_seg: 65.1774  decode.semantic_cd_to.loss_ce: 0.6769  decode.semantic_cd_to.acc_seg: 76.5736
2024/04/26 11:02:51 - mmengine - INFO - Iter(train) [  450/40000]  base_lr: 9.9090e-04 lr: 9.9090e-04  eta: 7:19:20  time: 0.6601  data_time: 0.0319  memory: 6217  loss: 1.3805  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.7229  decode.semantic_cd_from.acc_seg: 72.6983  decode.semantic_cd_to.loss_ce: 0.6576  decode.semantic_cd_to.acc_seg: 78.3995
2024/04/26 11:03:23 - mmengine - INFO - Iter(train) [  500/40000]  base_lr: 9.8989e-04 lr: 9.8989e-04  eta: 7:17:42  time: 0.6420  data_time: 0.0243  memory: 6219  loss: 1.3505  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6828  decode.semantic_cd_from.acc_seg: 77.0075  decode.semantic_cd_to.loss_ce: 0.6677  decode.semantic_cd_to.acc_seg: 78.8156
2024/04/26 11:03:56 - mmengine - INFO - Iter(train) [  550/40000]  base_lr: 9.8887e-04 lr: 9.8887e-04  eta: 7:17:04  time: 0.6610  data_time: 0.0338  memory: 6215  loss: 1.3806  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6907  decode.semantic_cd_from.acc_seg: 74.7352  decode.semantic_cd_to.loss_ce: 0.6899  decode.semantic_cd_to.acc_seg: 74.2981
2024/04/26 11:04:29 - mmengine - INFO - Iter(train) [  600/40000]  base_lr: 9.8786e-04 lr: 9.8786e-04  eta: 7:16:01  time: 0.6506  data_time: 0.0274  memory: 6217  loss: 1.2539  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6612  decode.semantic_cd_from.acc_seg: 73.2606  decode.semantic_cd_to.loss_ce: 0.5928  decode.semantic_cd_to.acc_seg: 78.2316
2024/04/26 11:05:02 - mmengine - INFO - Iter(train) [  650/40000]  base_lr: 9.8685e-04 lr: 9.8685e-04  eta: 7:15:08  time: 0.6599  data_time: 0.0338  memory: 6216  loss: 1.3703  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.7442  decode.semantic_cd_from.acc_seg: 62.5257  decode.semantic_cd_to.loss_ce: 0.6260  decode.semantic_cd_to.acc_seg: 78.1242
2024/04/26 11:05:35 - mmengine - INFO - Iter(train) [  700/40000]  base_lr: 9.8583e-04 lr: 9.8583e-04  eta: 7:14:18  time: 0.6401  data_time: 0.0223  memory: 6217  loss: 1.3233  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6921  decode.semantic_cd_from.acc_seg: 63.7578  decode.semantic_cd_to.loss_ce: 0.6312  decode.semantic_cd_to.acc_seg: 73.9684
2024/04/26 11:06:08 - mmengine - INFO - Iter(train) [  750/40000]  base_lr: 9.8482e-04 lr: 9.8482e-04  eta: 7:13:35  time: 0.6524  data_time: 0.0318  memory: 6215  loss: 1.3098  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6750  decode.semantic_cd_from.acc_seg: 71.1711  decode.semantic_cd_to.loss_ce: 0.6348  decode.semantic_cd_to.acc_seg: 68.7412
2024/04/26 11:06:40 - mmengine - INFO - Iter(train) [  800/40000]  base_lr: 9.8380e-04 lr: 9.8380e-04  eta: 7:12:28  time: 0.6437  data_time: 0.0211  memory: 6217  loss: 1.2980  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.7200  decode.semantic_cd_from.acc_seg: 70.3378  decode.semantic_cd_to.loss_ce: 0.5780  decode.semantic_cd_to.acc_seg: 79.4105
2024/04/26 11:07:13 - mmengine - INFO - Iter(train) [  850/40000]  base_lr: 9.8279e-04 lr: 9.8279e-04  eta: 7:11:48  time: 0.6596  data_time: 0.0279  memory: 6213  loss: 1.3866  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6956  decode.semantic_cd_from.acc_seg: 71.4475  decode.semantic_cd_to.loss_ce: 0.6909  decode.semantic_cd_to.acc_seg: 79.3616
2024/04/26 11:07:46 - mmengine - INFO - Iter(train) [  900/40000]  base_lr: 9.8177e-04 lr: 9.8177e-04  eta: 7:11:04  time: 0.6469  data_time: 0.0223  memory: 6217  loss: 1.2347  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6414  decode.semantic_cd_from.acc_seg: 84.1916  decode.semantic_cd_to.loss_ce: 0.5933  decode.semantic_cd_to.acc_seg: 73.1520
2024/04/26 11:08:19 - mmengine - INFO - Iter(train) [  950/40000]  base_lr: 9.8076e-04 lr: 9.8076e-04  eta: 7:10:22  time: 0.6631  data_time: 0.0299  memory: 6215  loss: 1.3037  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6484  decode.semantic_cd_from.acc_seg: 81.5560  decode.semantic_cd_to.loss_ce: 0.6553  decode.semantic_cd_to.acc_seg: 72.4231
2024/04/26 11:08:51 - mmengine - INFO - Exp name: scd_upernet_r18_256x512_40k_custom_second_reverse_20240426_105747
2024/04/26 11:08:51 - mmengine - INFO - Iter(train) [ 1000/40000]  base_lr: 9.7974e-04 lr: 9.7974e-04  eta: 7:09:26  time: 0.6459  data_time: 0.0226  memory: 6214  loss: 1.2749  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6785  decode.semantic_cd_from.acc_seg: 69.2935  decode.semantic_cd_to.loss_ce: 0.5965  decode.semantic_cd_to.acc_seg: 79.8328
2024/04/26 11:09:24 - mmengine - INFO - Iter(train) [ 1050/40000]  base_lr: 9.7873e-04 lr: 9.7873e-04  eta: 7:08:35  time: 0.6307  data_time: 0.0287  memory: 6219  loss: 1.3226  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.7077  decode.semantic_cd_from.acc_seg: 67.9155  decode.semantic_cd_to.loss_ce: 0.6149  decode.semantic_cd_to.acc_seg: 70.6348
2024/04/26 11:09:57 - mmengine - INFO - Iter(train) [ 1100/40000]  base_lr: 9.7771e-04 lr: 9.7771e-04  eta: 7:07:54  time: 0.6731  data_time: 0.0346  memory: 6216  loss: 1.2177  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6522  decode.semantic_cd_from.acc_seg: 74.1093  decode.semantic_cd_to.loss_ce: 0.5655  decode.semantic_cd_to.acc_seg: 74.2081
2024/04/26 11:10:29 - mmengine - INFO - Iter(train) [ 1150/40000]  base_lr: 9.7670e-04 lr: 9.7670e-04  eta: 7:07:06  time: 0.6500  data_time: 0.0270  memory: 6221  loss: 1.1561  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5893  decode.semantic_cd_from.acc_seg: 74.4151  decode.semantic_cd_to.loss_ce: 0.5669  decode.semantic_cd_to.acc_seg: 82.8591
2024/04/26 11:11:02 - mmengine - INFO - Iter(train) [ 1200/40000]  base_lr: 9.7568e-04 lr: 9.7568e-04  eta: 7:06:12  time: 0.6446  data_time: 0.0241  memory: 6215  loss: 1.1951  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6409  decode.semantic_cd_from.acc_seg: 71.5545  decode.semantic_cd_to.loss_ce: 0.5542  decode.semantic_cd_to.acc_seg: 81.3648
2024/04/26 11:11:34 - mmengine - INFO - Iter(train) [ 1250/40000]  base_lr: 9.7467e-04 lr: 9.7467e-04  eta: 7:05:35  time: 0.6532  data_time: 0.0283  memory: 6215  loss: 1.1937  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6298  decode.semantic_cd_from.acc_seg: 73.6095  decode.semantic_cd_to.loss_ce: 0.5638  decode.semantic_cd_to.acc_seg: 80.6597
2024/04/26 11:12:07 - mmengine - INFO - Iter(train) [ 1300/40000]  base_lr: 9.7365e-04 lr: 9.7365e-04  eta: 7:04:45  time: 0.6527  data_time: 0.0259  memory: 6215  loss: 1.3329  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6645  decode.semantic_cd_from.acc_seg: 71.7276  decode.semantic_cd_to.loss_ce: 0.6684  decode.semantic_cd_to.acc_seg: 82.6563
2024/04/26 11:12:39 - mmengine - INFO - Iter(train) [ 1350/40000]  base_lr: 9.7264e-04 lr: 9.7264e-04  eta: 7:04:06  time: 0.6535  data_time: 0.0310  memory: 6216  loss: 1.2894  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6578  decode.semantic_cd_from.acc_seg: 77.5528  decode.semantic_cd_to.loss_ce: 0.6316  decode.semantic_cd_to.acc_seg: 77.3752
2024/04/26 11:13:12 - mmengine - INFO - Iter(train) [ 1400/40000]  base_lr: 9.7162e-04 lr: 9.7162e-04  eta: 7:03:23  time: 0.6515  data_time: 0.0245  memory: 6215  loss: 1.1613  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6348  decode.semantic_cd_from.acc_seg: 67.3040  decode.semantic_cd_to.loss_ce: 0.5266  decode.semantic_cd_to.acc_seg: 76.2559
2024/04/26 11:13:45 - mmengine - INFO - Iter(train) [ 1450/40000]  base_lr: 9.7060e-04 lr: 9.7060e-04  eta: 7:02:48  time: 0.6577  data_time: 0.0281  memory: 6216  loss: 1.2746  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6874  decode.semantic_cd_from.acc_seg: 75.3978  decode.semantic_cd_to.loss_ce: 0.5872  decode.semantic_cd_to.acc_seg: 72.4715
2024/04/26 11:14:17 - mmengine - INFO - Iter(train) [ 1500/40000]  base_lr: 9.6959e-04 lr: 9.6959e-04  eta: 7:02:01  time: 0.6510  data_time: 0.0217  memory: 6218  loss: 1.0869  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5267  decode.semantic_cd_from.acc_seg: 77.3848  decode.semantic_cd_to.loss_ce: 0.5602  decode.semantic_cd_to.acc_seg: 83.6625
2024/04/26 11:14:50 - mmengine - INFO - Iter(train) [ 1550/40000]  base_lr: 9.6857e-04 lr: 9.6857e-04  eta: 7:01:23  time: 0.6621  data_time: 0.0290  memory: 6217  loss: 1.3156  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6806  decode.semantic_cd_from.acc_seg: 68.6981  decode.semantic_cd_to.loss_ce: 0.6350  decode.semantic_cd_to.acc_seg: 66.7464
2024/04/26 11:15:22 - mmengine - INFO - Iter(train) [ 1600/40000]  base_lr: 9.6755e-04 lr: 9.6755e-04  eta: 7:00:41  time: 0.6478  data_time: 0.0233  memory: 6217  loss: 1.1073  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5764  decode.semantic_cd_from.acc_seg: 78.2243  decode.semantic_cd_to.loss_ce: 0.5309  decode.semantic_cd_to.acc_seg: 78.6301
2024/04/26 11:15:55 - mmengine - INFO - Iter(train) [ 1650/40000]  base_lr: 9.6654e-04 lr: 9.6654e-04  eta: 7:00:02  time: 0.6461  data_time: 0.0309  memory: 6219  loss: 1.1745  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6594  decode.semantic_cd_from.acc_seg: 80.9841  decode.semantic_cd_to.loss_ce: 0.5150  decode.semantic_cd_to.acc_seg: 80.9291
2024/04/26 11:16:28 - mmengine - INFO - Iter(train) [ 1700/40000]  base_lr: 9.6552e-04 lr: 9.6552e-04  eta: 6:59:23  time: 0.6541  data_time: 0.0254  memory: 6217  loss: 1.1096  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6078  decode.semantic_cd_from.acc_seg: 68.7960  decode.semantic_cd_to.loss_ce: 0.5018  decode.semantic_cd_to.acc_seg: 80.6704
2024/04/26 11:17:00 - mmengine - INFO - Iter(train) [ 1750/40000]  base_lr: 9.6450e-04 lr: 9.6450e-04  eta: 6:58:48  time: 0.6598  data_time: 0.0308  memory: 6217  loss: 1.2709  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6921  decode.semantic_cd_from.acc_seg: 79.1489  decode.semantic_cd_to.loss_ce: 0.5788  decode.semantic_cd_to.acc_seg: 75.0460
2024/04/26 11:17:33 - mmengine - INFO - Iter(train) [ 1800/40000]  base_lr: 9.6349e-04 lr: 9.6349e-04  eta: 6:58:08  time: 0.6458  data_time: 0.0232  memory: 6213  loss: 1.1975  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6631  decode.semantic_cd_from.acc_seg: 65.0049  decode.semantic_cd_to.loss_ce: 0.5344  decode.semantic_cd_to.acc_seg: 83.0443
2024/04/26 11:18:06 - mmengine - INFO - Iter(train) [ 1850/40000]  base_lr: 9.6247e-04 lr: 9.6247e-04  eta: 6:57:36  time: 0.6681  data_time: 0.0315  memory: 6214  loss: 1.1375  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6105  decode.semantic_cd_from.acc_seg: 79.6435  decode.semantic_cd_to.loss_ce: 0.5270  decode.semantic_cd_to.acc_seg: 72.1409
2024/04/26 11:18:38 - mmengine - INFO - Iter(train) [ 1900/40000]  base_lr: 9.6145e-04 lr: 9.6145e-04  eta: 6:56:57  time: 0.6494  data_time: 0.0221  memory: 6218  loss: 1.1581  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6188  decode.semantic_cd_from.acc_seg: 70.2349  decode.semantic_cd_to.loss_ce: 0.5393  decode.semantic_cd_to.acc_seg: 80.9136
2024/04/26 11:19:11 - mmengine - INFO - Iter(train) [ 1950/40000]  base_lr: 9.6043e-04 lr: 9.6043e-04  eta: 6:56:24  time: 0.6527  data_time: 0.0269  memory: 6217  loss: 1.1501  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6142  decode.semantic_cd_from.acc_seg: 81.8326  decode.semantic_cd_to.loss_ce: 0.5359  decode.semantic_cd_to.acc_seg: 77.1848
2024/04/26 11:19:44 - mmengine - INFO - Exp name: scd_upernet_r18_256x512_40k_custom_second_reverse_20240426_105747
2024/04/26 11:19:44 - mmengine - INFO - Iter(train) [ 2000/40000]  base_lr: 9.5942e-04 lr: 9.5942e-04  eta: 6:55:45  time: 0.6515  data_time: 0.0231  memory: 6216  loss: 1.0477  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5378  decode.semantic_cd_from.acc_seg: 81.2718  decode.semantic_cd_to.loss_ce: 0.5099  decode.semantic_cd_to.acc_seg: 79.8077
2024/04/26 11:20:16 - mmengine - INFO - Iter(train) [ 2050/40000]  base_lr: 9.5840e-04 lr: 9.5840e-04  eta: 6:55:08  time: 0.6410  data_time: 0.0303  memory: 6215  loss: 1.0983  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5937  decode.semantic_cd_from.acc_seg: 80.7065  decode.semantic_cd_to.loss_ce: 0.5046  decode.semantic_cd_to.acc_seg: 84.9454
2024/04/26 11:20:49 - mmengine - INFO - Iter(train) [ 2100/40000]  base_lr: 9.5738e-04 lr: 9.5738e-04  eta: 6:54:30  time: 0.6504  data_time: 0.0207  memory: 6213  loss: 1.0608  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5620  decode.semantic_cd_from.acc_seg: 77.9023  decode.semantic_cd_to.loss_ce: 0.4987  decode.semantic_cd_to.acc_seg: 79.8157
2024/04/26 11:21:21 - mmengine - INFO - Iter(train) [ 2150/40000]  base_lr: 9.5636e-04 lr: 9.5636e-04  eta: 6:53:53  time: 0.6511  data_time: 0.0256  memory: 6217  loss: 1.0508  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5284  decode.semantic_cd_from.acc_seg: 82.4979  decode.semantic_cd_to.loss_ce: 0.5224  decode.semantic_cd_to.acc_seg: 82.7942
2024/04/26 11:21:54 - mmengine - INFO - Iter(train) [ 2200/40000]  base_lr: 9.5534e-04 lr: 9.5534e-04  eta: 6:53:17  time: 0.6478  data_time: 0.0199  memory: 6220  loss: 1.1878  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6202  decode.semantic_cd_from.acc_seg: 83.5395  decode.semantic_cd_to.loss_ce: 0.5676  decode.semantic_cd_to.acc_seg: 71.6823
2024/04/26 11:22:26 - mmengine - INFO - Iter(train) [ 2250/40000]  base_lr: 9.5433e-04 lr: 9.5433e-04  eta: 6:52:39  time: 0.6488  data_time: 0.0350  memory: 6215  loss: 1.1190  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5984  decode.semantic_cd_from.acc_seg: 79.7233  decode.semantic_cd_to.loss_ce: 0.5206  decode.semantic_cd_to.acc_seg: 72.1518
2024/04/26 11:22:59 - mmengine - INFO - Iter(train) [ 2300/40000]  base_lr: 9.5331e-04 lr: 9.5331e-04  eta: 6:52:03  time: 0.6486  data_time: 0.0199  memory: 6223  loss: 1.1774  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6118  decode.semantic_cd_from.acc_seg: 73.8663  decode.semantic_cd_to.loss_ce: 0.5656  decode.semantic_cd_to.acc_seg: 76.5118
2024/04/26 11:23:31 - mmengine - INFO - Iter(train) [ 2350/40000]  base_lr: 9.5229e-04 lr: 9.5229e-04  eta: 6:51:26  time: 0.6489  data_time: 0.0276  memory: 6215  loss: 1.1186  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5736  decode.semantic_cd_from.acc_seg: 79.9533  decode.semantic_cd_to.loss_ce: 0.5450  decode.semantic_cd_to.acc_seg: 81.6492
2024/04/26 11:24:03 - mmengine - INFO - Iter(train) [ 2400/40000]  base_lr: 9.5127e-04 lr: 9.5127e-04  eta: 6:50:30  time: 0.5324  data_time: 0.0206  memory: 6215  loss: 1.1375  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6120  decode.semantic_cd_from.acc_seg: 67.0379  decode.semantic_cd_to.loss_ce: 0.5255  decode.semantic_cd_to.acc_seg: 81.3190
2024/04/26 11:24:27 - mmengine - INFO - Iter(train) [ 2450/40000]  base_lr: 9.5025e-04 lr: 9.5025e-04  eta: 6:47:40  time: 0.4755  data_time: 0.0288  memory: 6220  loss: 1.0064  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5323  decode.semantic_cd_from.acc_seg: 67.7515  decode.semantic_cd_to.loss_ce: 0.4741  decode.semantic_cd_to.acc_seg: 83.8450
2024/04/26 11:24:50 - mmengine - INFO - Iter(train) [ 2500/40000]  base_lr: 9.4923e-04 lr: 9.4923e-04  eta: 6:44:53  time: 0.4718  data_time: 0.0226  memory: 6216  loss: 1.0556  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5694  decode.semantic_cd_from.acc_seg: 82.0476  decode.semantic_cd_to.loss_ce: 0.4862  decode.semantic_cd_to.acc_seg: 77.6847
2024/04/26 11:25:14 - mmengine - INFO - Iter(train) [ 2550/40000]  base_lr: 9.4821e-04 lr: 9.4821e-04  eta: 6:42:15  time: 0.4832  data_time: 0.0280  memory: 6214  loss: 1.0519  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5329  decode.semantic_cd_from.acc_seg: 76.5292  decode.semantic_cd_to.loss_ce: 0.5190  decode.semantic_cd_to.acc_seg: 70.9648
2024/04/26 11:25:38 - mmengine - INFO - Iter(train) [ 2600/40000]  base_lr: 9.4719e-04 lr: 9.4719e-04  eta: 6:39:38  time: 0.4666  data_time: 0.0210  memory: 6218  loss: 1.0382  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5544  decode.semantic_cd_from.acc_seg: 72.7263  decode.semantic_cd_to.loss_ce: 0.4838  decode.semantic_cd_to.acc_seg: 88.4448
2024/04/26 11:26:01 - mmengine - INFO - Iter(train) [ 2650/40000]  base_lr: 9.4617e-04 lr: 9.4617e-04  eta: 6:37:07  time: 0.4796  data_time: 0.0361  memory: 6215  loss: 1.0921  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5954  decode.semantic_cd_from.acc_seg: 71.0227  decode.semantic_cd_to.loss_ce: 0.4967  decode.semantic_cd_to.acc_seg: 76.5624
2024/04/26 11:26:29 - mmengine - INFO - Iter(train) [ 2700/40000]  base_lr: 9.4515e-04 lr: 9.4515e-04  eta: 6:35:42  time: 0.6480  data_time: 0.0228  memory: 6217  loss: 1.0315  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5660  decode.semantic_cd_from.acc_seg: 87.4005  decode.semantic_cd_to.loss_ce: 0.4655  decode.semantic_cd_to.acc_seg: 75.5524
2024/04/26 11:27:02 - mmengine - INFO - Iter(train) [ 2750/40000]  base_lr: 9.4414e-04 lr: 9.4414e-04  eta: 6:35:21  time: 0.6541  data_time: 0.0333  memory: 6215  loss: 1.0108  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5140  decode.semantic_cd_from.acc_seg: 84.7930  decode.semantic_cd_to.loss_ce: 0.4968  decode.semantic_cd_to.acc_seg: 77.3926
2024/04/26 11:27:34 - mmengine - INFO - Iter(train) [ 2800/40000]  base_lr: 9.4312e-04 lr: 9.4312e-04  eta: 6:34:56  time: 0.6514  data_time: 0.0198  memory: 6217  loss: 1.0039  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5390  decode.semantic_cd_from.acc_seg: 73.8155  decode.semantic_cd_to.loss_ce: 0.4649  decode.semantic_cd_to.acc_seg: 78.2484
2024/04/26 11:28:07 - mmengine - INFO - Iter(train) [ 2850/40000]  base_lr: 9.4210e-04 lr: 9.4210e-04  eta: 6:34:37  time: 0.6564  data_time: 0.0257  memory: 6216  loss: 0.9835  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5248  decode.semantic_cd_from.acc_seg: 85.5152  decode.semantic_cd_to.loss_ce: 0.4587  decode.semantic_cd_to.acc_seg: 79.3816
2024/04/26 11:28:40 - mmengine - INFO - Iter(train) [ 2900/40000]  base_lr: 9.4108e-04 lr: 9.4108e-04  eta: 6:34:14  time: 0.6525  data_time: 0.0195  memory: 6213  loss: 1.0466  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5639  decode.semantic_cd_from.acc_seg: 84.4389  decode.semantic_cd_to.loss_ce: 0.4826  decode.semantic_cd_to.acc_seg: 85.4537
2024/04/26 11:29:12 - mmengine - INFO - Iter(train) [ 2950/40000]  base_lr: 9.4005e-04 lr: 9.4005e-04  eta: 6:33:54  time: 0.6570  data_time: 0.0262  memory: 6217  loss: 1.1140  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5816  decode.semantic_cd_from.acc_seg: 77.4268  decode.semantic_cd_to.loss_ce: 0.5325  decode.semantic_cd_to.acc_seg: 82.7459
2024/04/26 11:29:45 - mmengine - INFO - Exp name: scd_upernet_r18_256x512_40k_custom_second_reverse_20240426_105747
2024/04/26 11:29:45 - mmengine - INFO - Iter(train) [ 3000/40000]  base_lr: 9.3903e-04 lr: 9.3903e-04  eta: 6:33:30  time: 0.6511  data_time: 0.0231  memory: 6219  loss: 1.1535  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.6485  decode.semantic_cd_from.acc_seg: 65.0963  decode.semantic_cd_to.loss_ce: 0.5050  decode.semantic_cd_to.acc_seg: 86.4622
2024/04/26 11:30:18 - mmengine - INFO - Iter(train) [ 3050/40000]  base_lr: 9.3801e-04 lr: 9.3801e-04  eta: 6:33:06  time: 0.6275  data_time: 0.0236  memory: 6217  loss: 0.9736  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5054  decode.semantic_cd_from.acc_seg: 71.3786  decode.semantic_cd_to.loss_ce: 0.4682  decode.semantic_cd_to.acc_seg: 83.7279
2024/04/26 11:30:50 - mmengine - INFO - Iter(train) [ 3100/40000]  base_lr: 9.3699e-04 lr: 9.3699e-04  eta: 6:32:41  time: 0.6512  data_time: 0.0196  memory: 6217  loss: 1.0868  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5846  decode.semantic_cd_from.acc_seg: 71.1487  decode.semantic_cd_to.loss_ce: 0.5021  decode.semantic_cd_to.acc_seg: 81.8537
2024/04/26 11:31:23 - mmengine - INFO - Iter(train) [ 3150/40000]  base_lr: 9.3597e-04 lr: 9.3597e-04  eta: 6:32:16  time: 0.6502  data_time: 0.0237  memory: 6217  loss: 0.9710  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5003  decode.semantic_cd_from.acc_seg: 72.2864  decode.semantic_cd_to.loss_ce: 0.4707  decode.semantic_cd_to.acc_seg: 84.8217
2024/04/26 11:31:55 - mmengine - INFO - Iter(train) [ 3200/40000]  base_lr: 9.3495e-04 lr: 9.3495e-04  eta: 6:31:52  time: 0.6496  data_time: 0.0207  memory: 6217  loss: 1.0185  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5253  decode.semantic_cd_from.acc_seg: 75.1490  decode.semantic_cd_to.loss_ce: 0.4932  decode.semantic_cd_to.acc_seg: 81.9104
2024/04/26 11:32:28 - mmengine - INFO - Iter(train) [ 3250/40000]  base_lr: 9.3393e-04 lr: 9.3393e-04  eta: 6:31:29  time: 0.6507  data_time: 0.0283  memory: 6215  loss: 1.0353  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5883  decode.semantic_cd_from.acc_seg: 74.6657  decode.semantic_cd_to.loss_ce: 0.4470  decode.semantic_cd_to.acc_seg: 80.3325
2024/04/26 11:33:00 - mmengine - INFO - Iter(train) [ 3300/40000]  base_lr: 9.3291e-04 lr: 9.3291e-04  eta: 6:31:02  time: 0.6467  data_time: 0.0185  memory: 6218  loss: 0.9831  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5234  decode.semantic_cd_from.acc_seg: 82.6042  decode.semantic_cd_to.loss_ce: 0.4597  decode.semantic_cd_to.acc_seg: 78.0049
2024/04/26 11:33:33 - mmengine - INFO - Iter(train) [ 3350/40000]  base_lr: 9.3189e-04 lr: 9.3189e-04  eta: 6:30:38  time: 0.6498  data_time: 0.0254  memory: 6218  loss: 1.0182  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5290  decode.semantic_cd_from.acc_seg: 77.2096  decode.semantic_cd_to.loss_ce: 0.4891  decode.semantic_cd_to.acc_seg: 84.2850
2024/04/26 11:34:06 - mmengine - INFO - Iter(train) [ 3400/40000]  base_lr: 9.3087e-04 lr: 9.3087e-04  eta: 6:30:12  time: 0.6448  data_time: 0.0202  memory: 6219  loss: 1.0745  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5498  decode.semantic_cd_from.acc_seg: 77.6357  decode.semantic_cd_to.loss_ce: 0.5247  decode.semantic_cd_to.acc_seg: 77.6897
2024/04/26 11:34:38 - mmengine - INFO - Iter(train) [ 3450/40000]  base_lr: 9.2984e-04 lr: 9.2984e-04  eta: 6:29:49  time: 0.6533  data_time: 0.0251  memory: 6218  loss: 0.9507  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5224  decode.semantic_cd_from.acc_seg: 70.2391  decode.semantic_cd_to.loss_ce: 0.4284  decode.semantic_cd_to.acc_seg: 87.3421
2024/04/26 11:35:11 - mmengine - INFO - Iter(train) [ 3500/40000]  base_lr: 9.2882e-04 lr: 9.2882e-04  eta: 6:29:21  time: 0.6289  data_time: 0.0175  memory: 6221  loss: 1.0867  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5595  decode.semantic_cd_from.acc_seg: 70.9600  decode.semantic_cd_to.loss_ce: 0.5272  decode.semantic_cd_to.acc_seg: 81.0125
2024/04/26 11:35:44 - mmengine - INFO - Iter(train) [ 3550/40000]  base_lr: 9.2780e-04 lr: 9.2780e-04  eta: 6:28:57  time: 0.6501  data_time: 0.0244  memory: 6214  loss: 0.9062  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.4600  decode.semantic_cd_from.acc_seg: 86.2910  decode.semantic_cd_to.loss_ce: 0.4462  decode.semantic_cd_to.acc_seg: 86.1902
2024/04/26 11:36:16 - mmengine - INFO - Iter(train) [ 3600/40000]  base_lr: 9.2678e-04 lr: 9.2678e-04  eta: 6:28:31  time: 0.6528  data_time: 0.0180  memory: 6217  loss: 0.9360  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5000  decode.semantic_cd_from.acc_seg: 84.1638  decode.semantic_cd_to.loss_ce: 0.4360  decode.semantic_cd_to.acc_seg: 86.7319
2024/04/26 11:36:49 - mmengine - INFO - Iter(train) [ 3650/40000]  base_lr: 9.2576e-04 lr: 9.2576e-04  eta: 6:28:03  time: 0.6622  data_time: 0.0348  memory: 6218  loss: 1.0109  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5406  decode.semantic_cd_from.acc_seg: 78.0553  decode.semantic_cd_to.loss_ce: 0.4703  decode.semantic_cd_to.acc_seg: 89.4460
2024/04/26 11:37:21 - mmengine - INFO - Iter(train) [ 3700/40000]  base_lr: 9.2473e-04 lr: 9.2473e-04  eta: 6:27:35  time: 0.6298  data_time: 0.0184  memory: 6214  loss: 0.9818  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5307  decode.semantic_cd_from.acc_seg: 74.7535  decode.semantic_cd_to.loss_ce: 0.4511  decode.semantic_cd_to.acc_seg: 81.7130
2024/04/26 11:37:54 - mmengine - INFO - Iter(train) [ 3750/40000]  base_lr: 9.2371e-04 lr: 9.2371e-04  eta: 6:27:08  time: 0.6488  data_time: 0.0257  memory: 6215  loss: 0.9911  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5244  decode.semantic_cd_from.acc_seg: 86.0803  decode.semantic_cd_to.loss_ce: 0.4667  decode.semantic_cd_to.acc_seg: 84.4518
2024/04/26 11:38:26 - mmengine - INFO - Iter(train) [ 3800/40000]  base_lr: 9.2269e-04 lr: 9.2269e-04  eta: 6:26:40  time: 0.6507  data_time: 0.0210  memory: 6216  loss: 0.9312  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5119  decode.semantic_cd_from.acc_seg: 81.5348  decode.semantic_cd_to.loss_ce: 0.4193  decode.semantic_cd_to.acc_seg: 86.0709
2024/04/26 11:38:59 - mmengine - INFO - Iter(train) [ 3850/40000]  base_lr: 9.2167e-04 lr: 9.2167e-04  eta: 6:26:12  time: 0.6481  data_time: 0.0264  memory: 6223  loss: 0.8778  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.4884  decode.semantic_cd_from.acc_seg: 81.8352  decode.semantic_cd_to.loss_ce: 0.3893  decode.semantic_cd_to.acc_seg: 87.2019
2024/04/26 11:39:31 - mmengine - INFO - Iter(train) [ 3900/40000]  base_lr: 9.2064e-04 lr: 9.2064e-04  eta: 6:25:44  time: 0.6498  data_time: 0.0183  memory: 6213  loss: 0.9964  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5283  decode.semantic_cd_from.acc_seg: 75.5499  decode.semantic_cd_to.loss_ce: 0.4681  decode.semantic_cd_to.acc_seg: 85.7708
2024/04/26 11:40:03 - mmengine - INFO - Iter(train) [ 3950/40000]  base_lr: 9.1962e-04 lr: 9.1962e-04  eta: 6:25:16  time: 0.6473  data_time: 0.0291  memory: 6215  loss: 0.9604  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.4902  decode.semantic_cd_from.acc_seg: 80.3928  decode.semantic_cd_to.loss_ce: 0.4702  decode.semantic_cd_to.acc_seg: 78.9787
2024/04/26 11:40:36 - mmengine - INFO - Exp name: scd_upernet_r18_256x512_40k_custom_second_reverse_20240426_105747
2024/04/26 11:40:36 - mmengine - INFO - Iter(train) [ 4000/40000]  base_lr: 9.1860e-04 lr: 9.1860e-04  eta: 6:24:47  time: 0.6502  data_time: 0.0199  memory: 6218  loss: 0.9844  decode.binary_cd.loss_ce: 0.0000  decode.binary_cd.acc_seg: 100.0000  decode.semantic_cd_from.loss_ce: 0.5356  decode.semantic_cd_from.acc_seg: 80.5928  decode.semantic_cd_to.loss_ce: 0.4487  decode.semantic_cd_to.acc_seg: 83.6353
2024/04/26 11:40:36 - mmengine - INFO - Saving checkpoint at 4000 iterations
2024/04/26 11:40:39 - mmengine - INFO - Iter(val) [  50/2968]    eta: 0:02:41  time: 0.0447  data_time: 0.0022  memory: 600  
2024/04/26 11:40:42 - mmengine - INFO - Iter(val) [ 100/2968]    eta: 0:02:35  time: 0.0447  data_time: 0.0023  memory: 321  
2024/04/26 11:40:44 - mmengine - INFO - Iter(val) [ 150/2968]    eta: 0:02:18  time: 0.0397  data_time: 0.0021  memory: 321  
2024/04/26 11:40:46 - mmengine - INFO - Iter(val) [ 200/2968]    eta: 0:02:17  time: 0.0378  data_time: 0.0023  memory: 321  
2024/04/26 11:40:48 - mmengine - INFO - Iter(val) [ 250/2968]    eta: 0:02:10  time: 0.0432  data_time: 0.0020  memory: 321  
2024/04/26 11:40:50 - mmengine - INFO - Iter(val) [ 300/2968]    eta: 0:02:04  time: 0.0451  data_time: 0.0021  memory: 321  
2024/04/26 11:40:53 - mmengine - INFO - Iter(val) [ 350/2968]    eta: 0:02:04  time: 0.0450  data_time: 0.0023  memory: 321  
2024/04/26 11:40:55 - mmengine - INFO - Iter(val) [ 400/2968]    eta: 0:01:59  time: 0.0448  data_time: 0.0021  memory: 321  
2024/04/26 11:40:57 - mmengine - INFO - Iter(val) [ 450/2968]    eta: 0:01:57  time: 0.0502  data_time: 0.0021  memory: 321  
2024/04/26 11:40:59 - mmengine - INFO - Iter(val) [ 500/2968]    eta: 0:01:53  time: 0.0276  data_time: 0.0023  memory: 321  
2024/04/26 11:41:01 - mmengine - INFO - Iter(val) [ 550/2968]    eta: 0:01:49  time: 0.0150  data_time: 0.0022  memory: 321  
2024/04/26 11:41:04 - mmengine - INFO - Iter(val) [ 600/2968]    eta: 0:01:48  time: 0.0455  data_time: 0.0021  memory: 321  
2024/04/26 11:41:06 - mmengine - INFO - Iter(val) [ 650/2968]    eta: 0:01:45  time: 0.0448  data_time: 0.0021  memory: 321  
2024/04/26 11:41:08 - mmengine - INFO - Iter(val) [ 700/2968]    eta: 0:01:42  time: 0.0793  data_time: 0.0021  memory: 321  
2024/04/26 11:41:10 - mmengine - INFO - Iter(val) [ 750/2968]    eta: 0:01:40  time: 0.0379  data_time: 0.0020  memory: 321  
2024/04/26 11:41:12 - mmengine - INFO - Iter(val) [ 800/2968]    eta: 0:01:37  time: 0.0442  data_time: 0.0021  memory: 321  
2024/04/26 11:41:15 - mmengine - INFO - Iter(val) [ 850/2968]    eta: 0:01:36  time: 0.0425  data_time: 0.0023  memory: 321  
2024/04/26 11:41:17 - mmengine - INFO - Iter(val) [ 900/2968]    eta: 0:01:33  time: 0.0449  data_time: 0.0020  memory: 321  
2024/04/26 11:41:19 - mmengine - INFO - Iter(val) [ 950/2968]    eta: 0:01:31  time: 0.0796  data_time: 0.0022  memory: 321  
2024/04/26 11:41:22 - mmengine - INFO - Iter(val) [1000/2968]    eta: 0:01:29  time: 0.0425  data_time: 0.0020  memory: 321  
2024/04/26 11:41:24 - mmengine - INFO - Iter(val) [1050/2968]    eta: 0:01:26  time: 0.0447  data_time: 0.0020  memory: 321  
2024/04/26 11:41:26 - mmengine - INFO - Iter(val) [1100/2968]    eta: 0:01:24  time: 0.0398  data_time: 0.0020  memory: 321  
2024/04/26 11:41:28 - mmengine - INFO - Iter(val) [1150/2968]    eta: 0:01:21  time: 0.0403  data_time: 0.0022  memory: 321  
2024/04/26 11:41:30 - mmengine - INFO - Iter(val) [1200/2968]    eta: 0:01:19  time: 0.0727  data_time: 0.0020  memory: 321  
2024/04/26 11:41:33 - mmengine - INFO - Iter(val) [1250/2968]    eta: 0:01:17  time: 0.0346  data_time: 0.0021  memory: 321  
2024/04/26 11:41:35 - mmengine - INFO - Iter(val) [1300/2968]    eta: 0:01:14  time: 0.0433  data_time: 0.0022  memory: 321  
2024/04/26 11:41:37 - mmengine - INFO - Iter(val) [1350/2968]    eta: 0:01:13  time: 0.0445  data_time: 0.0022  memory: 321  
2024/04/26 11:41:39 - mmengine - INFO - Iter(val) [1400/2968]    eta: 0:01:10  time: 0.0448  data_time: 0.0020  memory: 321  
2024/04/26 11:41:42 - mmengine - INFO - Iter(val) [1450/2968]    eta: 0:01:08  time: 0.0750  data_time: 0.0020  memory: 321  
2024/04/26 11:41:44 - mmengine - INFO - Iter(val) [1500/2968]    eta: 0:01:06  time: 0.0450  data_time: 0.0020  memory: 321  
2024/04/26 11:41:46 - mmengine - INFO - Iter(val) [1550/2968]    eta: 0:01:03  time: 0.0448  data_time: 0.0022  memory: 321  
2024/04/26 11:41:49 - mmengine - INFO - Iter(val) [1600/2968]    eta: 0:01:01  time: 0.0407  data_time: 0.0023  memory: 321  
2024/04/26 11:41:51 - mmengine - INFO - Iter(val) [1650/2968]    eta: 0:00:59  time: 0.0429  data_time: 0.0019  memory: 321  
2024/04/26 11:41:53 - mmengine - INFO - Iter(val) [1700/2968]    eta: 0:00:57  time: 0.0799  data_time: 0.0018  memory: 321  
2024/04/26 11:41:55 - mmengine - INFO - Iter(val) [1750/2968]    eta: 0:00:54  time: 0.0388  data_time: 0.0021  memory: 321  
2024/04/26 11:41:57 - mmengine - INFO - Iter(val) [1800/2968]    eta: 0:00:52  time: 0.0450  data_time: 0.0021  memory: 321  
2024/04/26 11:42:00 - mmengine - INFO - Iter(val) [1850/2968]    eta: 0:00:50  time: 0.0377  data_time: 0.0019  memory: 321  
2024/04/26 11:42:02 - mmengine - INFO - Iter(val) [1900/2968]    eta: 0:00:47  time: 0.0447  data_time: 0.0019  memory: 321  
2024/04/26 11:42:04 - mmengine - INFO - Iter(val) [1950/2968]    eta: 0:00:45  time: 0.0448  data_time: 0.0018  memory: 321  
2024/04/26 11:42:06 - mmengine - INFO - Iter(val) [2000/2968]    eta: 0:00:43  time: 0.0450  data_time: 0.0021  memory: 321  
2024/04/26 11:42:08 - mmengine - INFO - Iter(val) [2050/2968]    eta: 0:00:41  time: 0.0449  data_time: 0.0020  memory: 321  
2024/04/26 11:42:11 - mmengine - INFO - Iter(val) [2100/2968]    eta: 0:00:38  time: 0.0612  data_time: 0.0020  memory: 321  
2024/04/26 11:42:13 - mmengine - INFO - Iter(val) [2150/2968]    eta: 0:00:36  time: 0.0337  data_time: 0.0020  memory: 321  
2024/04/26 11:42:15 - mmengine - INFO - Iter(val) [2200/2968]    eta: 0:00:34  time: 0.0385  data_time: 0.0021  memory: 321  
2024/04/26 11:42:17 - mmengine - INFO - Iter(val) [2250/2968]    eta: 0:00:32  time: 0.0403  data_time: 0.0021  memory: 321  
2024/04/26 11:42:19 - mmengine - INFO - Iter(val) [2300/2968]    eta: 0:00:29  time: 0.0431  data_time: 0.0023  memory: 321  
2024/04/26 11:42:22 - mmengine - INFO - Iter(val) [2350/2968]    eta: 0:00:27  time: 0.0562  data_time: 0.0021  memory: 321  
2024/04/26 11:42:24 - mmengine - INFO - Iter(val) [2400/2968]    eta: 0:00:25  time: 0.0261  data_time: 0.0020  memory: 321  
2024/04/26 11:42:26 - mmengine - INFO - Iter(val) [2450/2968]    eta: 0:00:23  time: 0.0328  data_time: 0.0022  memory: 321  
2024/04/26 11:42:29 - mmengine - INFO - Iter(val) [2500/2968]    eta: 0:00:20  time: 0.0415  data_time: 0.0018  memory: 321  
2024/04/26 11:42:31 - mmengine - INFO - Iter(val) [2550/2968]    eta: 0:00:18  time: 0.0402  data_time: 0.0021  memory: 321  
2024/04/26 11:42:33 - mmengine - INFO - Iter(val) [2600/2968]    eta: 0:00:16  time: 0.0602  data_time: 0.0022  memory: 321  
2024/04/26 11:42:35 - mmengine - INFO - Iter(val) [2650/2968]    eta: 0:00:14  time: 0.0276  data_time: 0.0021  memory: 321  
2024/04/26 11:42:37 - mmengine - INFO - Iter(val) [2700/2968]    eta: 0:00:11  time: 0.0228  data_time: 0.0021  memory: 321  
2024/04/26 11:42:39 - mmengine - INFO - Iter(val) [2750/2968]    eta: 0:00:09  time: 0.0402  data_time: 0.0020  memory: 321  
2024/04/26 11:42:42 - mmengine - INFO - Iter(val) [2800/2968]    eta: 0:00:07  time: 0.0412  data_time: 0.0019  memory: 321  
2024/04/26 11:42:44 - mmengine - INFO - Iter(val) [2850/2968]    eta: 0:00:05  time: 0.0789  data_time: 0.0020  memory: 321  
2024/04/26 11:42:46 - mmengine - INFO - Iter(val) [2900/2968]    eta: 0:00:03  time: 0.0351  data_time: 0.0019  memory: 321  
2024/04/26 11:42:48 - mmengine - INFO - Iter(val) [2950/2968]    eta: 0:00:00  time: 0.0460  data_time: 0.0031  memory: 321  
2024/04/26 11:42:49 - mmengine - INFO - per binary class results:
2024/04/26 11:42:49 - mmengine - INFO - 
+-----------+--------+-----------+--------+-------+-------+
|   Class   | Fscore | Precision | Recall |  IoU  |  Acc  |
+-----------+--------+-----------+--------+-------+-------+
| unchanged | 100.0  |   100.0   | 100.0  | 100.0 | 100.0 |
|  changed  |  nan   |    nan    |  nan   |  nan  |  nan  |
+-----------+--------+-----------+--------+-------+-------+
2024/04/26 11:42:49 - mmengine - INFO - per semantic class results:
2024/04/26 11:42:49 - mmengine - INFO - 
+----------------+--------+-----------+--------+-------+-------+
|     Class      | Fscore | Precision | Recall |  IoU  |  Acc  |
+----------------+--------+-----------+--------+-------+-------+
|   unchanged    | 88.93  |   80.06   | 100.0  | 80.06 | 100.0 |
|     water      |  nan   |    nan    |  0.0   |  0.0  |  0.0  |
|     ground     |  nan   |    nan    |  0.0   |  0.0  |  0.0  |
| low vegetation |  nan   |    nan    |  0.0   |  0.0  |  0.0  |
|      tree      |  nan   |    nan    |  0.0   |  0.0  |  0.0  |
|    building    |  nan   |    nan    |  0.0   |  0.0  |  0.0  |
|  sports field  |  nan   |    nan    |  0.0   |  0.0  |  0.0  |
+----------------+--------+-----------+--------+-------+-------+
@ABCnutter
Copy link

Please be patient and wait for a few more epochs. If it still doesn't work, please check the learning rate or the data.

@regainOWO
Copy link
Author

@ABCnutter I found SECOND dataset only have label1(valid for seg_map_path_from) and label2(valid for seg_map_path_to), the seg_map_path do not exist, i generate it with unchaneged -> 0 and changed -> 1, whether it is caused by seg_map_path label uvalid value?

@YonghuiTAN22

This comment was marked as resolved.

@serendipityshe
Copy link

I have the same problem, Has it been solved??

@serendipityshe
Copy link

What images should i put in my SECOND dataset format label and label1 label2

@ZhangQuan-wq
Copy link

I have the same problem, Has it been solved??

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

5 participants