forked from liulab-dfci/TRUST4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SeqSet.hpp
9703 lines (8742 loc) · 280 KB
/
SeqSet.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// The data structure holds the set of sequences (can be "assembled" from several reads)
#ifndef _MOURISL_SEQSET_HEADER
#define _MOURISL_SEQSET_HEADER
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
#include <queue>
#include <string>
#include "SimpleVector.hpp"
#include "KmerIndex.hpp"
#include "ReadFiles.hpp"
#include "AlignAlgo.hpp"
struct _seqWrapper
{
char *name ;
char *consensus ; // This should be handled by malloc/free.
int consensusLen ;
SimpleVector<struct _posWeight> posWeight ;
bool isRef ; // this is from reference.
int minLeftExtAnchor, minRightExtAnchor ; // only overlap with size larger than this can be counted as valid extension.
struct _triple info[3] ; // For storing extra information. for ref, info[0,1] contains the coordinate for CDR1,2 and info[2].a for CDR3
// In extending seqs with mate pair information, these are used to store rough V, J, C read coordinate.
int barcode ; // transformed barcode. -1: no barcode
bool operator<( const struct _seqWrapper &b ) const
{
int i ;
int weightA = 0 ;
int weightB = 0 ;
for ( i = 0 ; i < consensusLen ; ++i )
weightA += posWeight[i].Sum() ;
for ( i = 0 ; i < b.consensusLen ; ++i )
weightB += b.posWeight[i].Sum() ;
if ( weightA != weightB )
return weightA > weightB ;
else
return consensusLen > b.consensusLen ;
}
} ;
struct _hit
{
struct _indexInfo indexHit ;
int readOffset ;
int strand ; // -1: different strand, 1: same strand. When strand==-1, the readOffset is the offset in the rcSeq.
int repeats ; // record how many times this hit with other index part.
bool operator<( const struct _hit &b ) const
{
if ( strand != b.strand )
return strand < b.strand ;
else if ( indexHit.idx != b.indexHit.idx )
return indexHit.idx < b.indexHit.idx ;
else if ( readOffset != b.readOffset )
return readOffset < b.readOffset ;
else if ( indexHit.offset != b.indexHit.offset )
return indexHit.offset < b.indexHit.offset ;
return false ;
}
} ;
struct _overlap
{
int seqIdx ;
int readStart, readEnd ; // When strand ==-1, the start,end is the offset in the rcSeq.
int seqStart, seqEnd ;
int strand ;
int matchCnt ; // The number of matched bases, count TWICE.
double similarity ;
SimpleVector<struct _pair> *hitCoords ;
SimpleVector<int> *info ; // store extra informations
int infoFromHits ; // some information obtained GetOverlapFromHits
bool operator<( const struct _overlap &b ) const
{
// The overlap with more matched bases should come first.
//if ( matchCnt > b.matchCnt + 2 || matchCnt < b.matchCnt - 2 )
if ( matchCnt != b.matchCnt )
return matchCnt > b.matchCnt ;
else if ( similarity != b.similarity )
return similarity > b.similarity ;
else if ( readEnd - readStart != b.readEnd - b.readStart )
return readEnd - readStart > b.readEnd - b.readStart ;
else if ( seqIdx != b.seqIdx )
return seqIdx < b.seqIdx ;
else if ( strand != b.strand )
return strand < b.strand ;
else if ( readStart != b.readStart )
return readStart < b.readStart ;
else if ( readEnd != b.readEnd )
return readEnd < b.readEnd ;
else if ( seqStart != b.seqStart )
return seqStart < b.seqStart ;
else
return seqEnd < b.seqEnd ;
return false ;
}
// double UpdateSimilarity( int rlen, int slen, int mcnt )
// {
// double origLen = matchCnt / similarity ;
// similarity = ( matchCnt + mcnt ) / ( origLen + rlen + slen ) ;
// matchCnt += mcnt ;
// }
} ;
// This order works better against reference set, because it seems works better for the 5' end site
struct _sortOverlapOnRef
{
bool operator() (const struct _overlap &a, const struct _overlap &b) const
{
// The overlap with more matched bases should come first.
//if ( a.matchCnt > b.matchCnt + 2 || a.matchCnt < b.matchCnt - 2 )
if ( a.matchCnt != b.matchCnt )
return a.matchCnt > b.matchCnt ;
else if ( a.similarity != b.similarity )
return a.similarity > b.similarity ;
else if ( a.readEnd - a.readStart != b.readEnd - b.readStart )
return a.readEnd - a.readStart > b.readEnd - b.readStart ;
else if ( a.strand != b.strand )
return a.strand < b.strand ;
else if ( a.seqStart != b.seqStart )
return a.seqStart < b.seqStart ;
else if ( a.seqEnd != b.seqEnd )
return a.seqEnd < b.seqEnd ;
else if ( a.readStart != b.readStart )
return a.readStart < b.readStart ;
else if ( a.readEnd != b.readEnd )
return a.readEnd < b.readEnd ;
else
return a.seqIdx < b.seqIdx ;
return false ;
}
} ;
struct _assignRead
{
char *id ;
char *read ;
int barcode ;
int umi ;
int info ;
struct _overlap overlap ;
} ;
struct _assignHistory
{
int curIdx ;
int curMateIdx ;
SimpleVector<int> readsAssignedTo ;
std::vector< std::vector<int> > readsInSeq ;
} ;
class SeqSet
{
private:
std::vector<struct _seqWrapper> seqs ;
KmerIndex seqIndex ;
int kmerLength ;
int radius ;
int hitLenRequired ;
int gapN ;
bool isLongSeqSet ; // Whether this seq set is built from long reads. Long reads may require more drastic filtration.
// Some threshold
double novelSeqSimilarity ;
double refSeqSimilarity ;
double repeatSimilarity ; // e.g., the repeat when building the branch graph.
struct _overlap prevAddInfo ;
static bool CompSortPairBInc( const struct _pair &p1, const struct _pair &p2 )
{
if ( p1.b != p2.b )
return p1.b < p2.b ;
else
return p1.a < p2.a ;
}
static bool CompSortPairAInc( const struct _pair &p1, const struct _pair &p2 )
{
return p1.a < p2.a ;
}
static bool CompSortOverlapsOnReadCoord( const struct _overlap &a, const struct _overlap &b )
{
return a.readStart < b.readStart ;
}
static bool CompSortAssignedReadById( const struct _assignRead &a, const struct _assignRead &b )
{
return strcmp( a.id, b.id ) < 0 ;
}
static bool CompSortOverlapByCoord( const struct _overlap &a, const struct _overlap &b )
{
if ( a.seqIdx != b.seqIdx )
return a.seqIdx < b.seqIdx ;
else if ( a.readStart != b.readStart )
return a.readStart < b.readStart ;
else
return a.readEnd < b.readEnd ;
}
static bool CompSortHitCoordDiff( const struct _triple &a, const struct _triple &b )
{
if ( a.c != b.c )
return a.c < b.c ;
else if ( a.b != b.b )
return a.b < b.b ;
else
return a.a < b.a ;
}
bool IsReverseComplement( char *a, char *b )
{
int i, j ;
int len = strlen( a ) ;
if ( len != strlen( b) )
return false ;
for ( i = 0, j = len - 1 ; i < len ; ++i, --j )
if ( a[i] == 'N' && b[j] == 'N' )
continue ;
else if ( a[i] != 'N' && b[j] != 'N' )
{
if ( 3 - nucToNum[ a[i] - 'A' ] != nucToNum[ b[j] - 'A' ] )
return false ;
}
else
return false ;
return true ;
}
void Reverse( char *r, char *seq, int len )
{
int i ;
for ( i = 0 ; i < len ; ++i )
r[i] = seq[len - 1 - i] ;
r[i] = '\0' ;
}
bool IsPosWeightCompatible( const struct _posWeight &a, const struct _posWeight &b )
{
int sumA = a.Sum() ;
int sumB = b.Sum() ;
if ( sumA == 0 || sumB == 0
|| ( sumA < 3 * a.count[0] && sumB < 3 * b.count[0] )
|| ( sumA < 3 * a.count[1] && sumB < 3 * b.count[1] )
|| ( sumA < 3 * a.count[2] && sumB < 3 * b.count[2] )
|| ( sumA < 3 * a.count[3] && sumB < 3 * b.count[3] ) )
return true ;
return false ;
}
bool IsOverlapIntersect( const struct _overlap &a, const struct _overlap &b )
{
if ( a.seqIdx == b.seqIdx &&
( ( a.seqStart <= b.seqStart && a.seqEnd >= b.seqStart )
|| ( b.seqStart <= a.seqStart && b.seqEnd >= a.seqStart ) ) )
return true ;
return false ;
}
// Return the first index whose hits.a is smaller or equal to valA
int BinarySearch_LIS( int top[], int size, int valA, SimpleVector<struct _pair> &hits )
{
int l = 0, r = size - 1 ;
int m ;
while ( l <= r )
{
m = ( l + r ) / 2 ;
if ( valA == hits[ top[m] ].a )
{
return m ;
}
else if ( valA < hits[ top[m] ].a )
{
r = m - 1 ;
}
else
{
l = m + 1 ;
}
}
return l - 1 ;
}
// The O(nlogn) method for solving LIS problem, suppose there are n hits.
// Return the LIS, the LIS's length is returned by the function
int LongestIncreasingSubsequence( SimpleVector<struct _pair> &hits, SimpleVector<struct _pair> &LIS )
{
// Only use the first hit of each qhit
// Bias towards left
int i, j, k ;
int ret = 0 ;
int size = hits.Size() ;
int *record = new int[size] ; // The index of the selected hits
int *top = new int[size] ; // record the index of the hits with smallest valB of the corresponding LIS length. kind of the top element.
int *link = new int[size] ; // used to retrieve the LIS
int rcnt = 1 ;
record[0] = 0 ;
for ( i = 1 ; i < size ; ++i )
{
//if ( hits[i].b == hits[i - 1].b )
// continue ;
record[rcnt] = i ;
++rcnt ;
}
top[0] = 0 ;
link[0] = -1 ;
ret = 1 ;
for ( i = 1 ; i < rcnt ; ++i )
{
int tag = 0 ;
if ( hits[ top[ ret - 1 ] ].a <= hits[ record[i] ].a )
tag = ret - 1 ;
else
tag = BinarySearch_LIS( top, ret, hits[ record[i] ].a, hits ) ;
if ( tag == -1 )
{
top[0] = record[i] ;
link[ record[i] ] = -1 ;
}
else if ( hits[ record[i] ].a > hits[ top[tag] ].a )
{
if ( tag == ret - 1 )
{
top[ret] = record[i] ;
++ret ;
link[ record[i] ] = top[tag] ;
}
else if ( hits[ record[i] ].a < hits[ top[tag + 1] ].a )
{
top[ tag + 1 ] = record[i] ;
link[ record[i] ] = top[tag] ;
}
}
}
k = top[ret - 1] ;
for ( i = ret - 1 ; i >= 0 ; --i )
{
LIS.PushBack( hits[k] ) ;
k = link[k] ;
}
LIS.Reverse() ;
//for ( i = 0 ; i < ret ; ++i )
// LIS.PushBack( hits[ top[i] ] ) ;
// Remove elements with same b.
if ( ret > 0 )
{
k = 1 ;
for ( i = 1 ; i < ret ; ++i )
{
if ( LIS[i].b == LIS[k - 1].b )
continue ;
LIS[k] = LIS[i] ;
++k ;
}
ret = k ;
}
delete []top ;
delete []record ;
delete []link ;
return ret ;
}
void GetAlignStats( char *align, bool update, int &matchCnt, int &mismatchCnt, int &indelCnt)
{
int k ;
if ( !update )
{
matchCnt = mismatchCnt = indelCnt = 0 ;
}
for ( k = 0 ; align[k] != -1 ; ++k )
{
if ( align[k] == EDIT_MATCH )
++matchCnt ;
else if ( align[k] == EDIT_MISMATCH )
++mismatchCnt ;
else
++indelCnt ;
}
}
bool IsOverlapLowComplex( char *r, struct _overlap &o )
{
int cnt[4] = {0, 0, 0, 0} ;
int i ;
for ( i = o.readStart ; i <= o.readEnd ; ++i )
{
if ( r[i] == 'N' )
continue ;
++cnt[ nucToNum[ r[i] - 'A' ] ] ;
}
int len = o.readEnd - o.readStart + 1 ;
int lowCnt = 0 ;
int lowTotalCnt = 0 ;
for ( i = 0 ; i < 4 ; ++i )
{
if ( cnt[i] <= 2 )
{
++lowCnt ;
lowTotalCnt += cnt[i] ;
}
}
if ( lowTotalCnt * 7 >= o.readEnd - o.readStart + 1 )
return false ;
if ( lowCnt >= 2 )
return true ;
return false ;
}
bool IsEquivalentConstantGene( char *a, char *b )
{
int i ;
for ( i = 0 ; i < 4 ; ++i )
if ( a[i] != b[i] )
return false ;
return true ;
}
void SetPrevAddInfo( int seqIdx, int readStart, int readEnd, int seqStart, int seqEnd, int strand )
{
prevAddInfo.seqIdx = seqIdx ;
prevAddInfo.readStart = readStart ;
prevAddInfo.readEnd = readEnd ;
prevAddInfo.seqStart = seqStart ;
prevAddInfo.seqEnd = seqEnd ;
prevAddInfo.strand = strand ;
}
char DnaToAa( char a, char b, char c )
{
if ( a == 'N' || b == 'N' || c == 'N' )
return '-' ;
if ( a == 'M' || b == 'M' || c == 'M' )
return '-' ;
if ( a == 'A' )
{
if ( b == 'A' )
{
if ( c == 'A' || c == 'G' )
return 'K' ;
else
return 'N' ;
}
else if ( b == 'C' )
{
return 'T' ;
}
else if ( b == 'G' )
{
if ( c == 'A' || c == 'G' )
return 'R' ;
else
return 'S' ;
}
else
{
if ( c == 'G' )
return 'M' ;
else
return 'I' ;
}
}
else if ( a == 'C' )
{
if ( b == 'A' )
{
if ( c == 'A' || c == 'G' )
return 'Q' ;
else
return 'H' ;
}
else if ( b == 'C' )
{
return 'P' ;
}
else if ( b == 'G' )
{
return 'R' ;
}
else
{
return 'L' ;
}
}
else if ( a == 'G' )
{
if ( b == 'A' )
{
if ( c == 'A' || c == 'G' )
return 'E' ;
else
return 'D' ;
}
else if ( b == 'C' )
{
return 'A' ;
}
else if ( b == 'G' )
{
return 'G' ;
}
else
{
return 'V' ;
}
}
else
{
if ( b == 'A' )
{
if ( c == 'A' || c == 'G' )
return '*' ;
else
return 'Y' ;
}
else if ( b == 'C' )
{
return 'S' ;
}
else if ( b == 'G' )
{
if ( c == 'A' )
return '*' ;
else if ( c == 'G' )
return 'W' ;
else
return 'C' ;
}
else
{
if ( c == 'A' || c == 'G' )
return 'L' ;
else
return 'F' ;
}
}
}
void ReleaseSeq( int idx )
{
if ( seqs[idx].consensus == NULL )
return ;
free( seqs[idx].name ) ;
free( seqs[idx].consensus ) ;
seqs[idx].posWeight.Release() ;
seqs[idx].name = seqs[idx].consensus = NULL ;
}
// Use the hits to extract overlaps from SeqSet
int GetOverlapsFromHits( SimpleVector<struct _hit> &hits, int hitLenRequired, int filter, std::vector<struct _overlap> &overlaps )
{
int i, j, k ;
int hitSize = hits.Size() ;
SimpleVector<struct _triple> hitCoordDiff ;
hitCoordDiff.Reserve( hitSize ) ;
SimpleVector<struct _pair> concordantHitCoord ;
SimpleVector<struct _pair> hitCoordLIS ;
SimpleVector<struct _hit> finalHits ;
// Compute the minHitRequired.
// NOTE: each strand should have its own minHitRequired, it could be that on one strand,
// each hit is matched to too many places and the skip hits mechanism is triggered.
int novelMinHitRequired[2] = {3, 3} ;
int refMinHitRequired[2] = {3, 3} ;
bool removeOnlyRepeats[2] = {false, false} ; // Remove the hits on a seq that are all repeats hit.
int possibleOverlapCnt[2] = {0, 0} ;
if ( filter == 1 )
{
int longestHits[2] = {0, 0} ;
for ( i = 0 ; i < hitSize ; ++i )
{
int isPlusStrand = ( 1 + hits[i].strand ) / 2 ;
for ( j = i + 1 ; j < hitSize ; ++j )
if ( hits[j].strand != hits[i].strand || hits[j].indexHit.idx != hits[i].indexHit.idx )
break ;
if ( !seqs[ hits[i].indexHit.idx].isRef )
{
if ( j - i > novelMinHitRequired[ isPlusStrand ] )
++possibleOverlapCnt[ isPlusStrand ] ;
if ( j - i > longestHits[ isPlusStrand ] )
longestHits[ isPlusStrand] = j - i ;
}
if ( !removeOnlyRepeats[isPlusStrand] )
{
int cnt = 0 ;
for ( k = i ; k < j ; ++k )
if ( hits[k].repeats <= 10000 )
++cnt ;
if ( cnt >= novelMinHitRequired[ isPlusStrand ] )
{
removeOnlyRepeats[ isPlusStrand ] = true ;
}
}
i = j ;
}
// filter based on the repeatability of overlaps.
for ( i = 0 ; i <= 1 ; ++i )
{
if ( possibleOverlapCnt[i] > 100000 )
novelMinHitRequired[i] = longestHits[i] * 0.75 ;
else if ( possibleOverlapCnt[i] > 10000 )
novelMinHitRequired[i] = longestHits[i] / 2 ;
else if ( possibleOverlapCnt[i] > 1000 )
novelMinHitRequired[i] = longestHits[i] / 3 ;
else if ( possibleOverlapCnt[i] > 100 )
novelMinHitRequired[i] = longestHits[i] / 4 ;
}
}
//if ( novelMinHitRequired > 3 )
// printf( "novelMinHitRequired=%d\n", novelMinHitRequired ) ;
for ( i = 0 ; i < hitSize ; )
{
for ( j = i + 1 ; j < hitSize ; ++j )
if ( hits[j].strand != hits[i].strand || hits[j].indexHit.idx != hits[i].indexHit.idx )
break ;
int minHitRequired = novelMinHitRequired[ ( 1 + hits[i].strand ) / 2 ] ;
if ( seqs[ hits[i].indexHit.idx].isRef )
minHitRequired = refMinHitRequired[ ( 1 + hits[i].strand ) / 2 ];
/*if ( filter == 1 && readLen > 0 )
{
int readStart = hits[i].readOffset, readEnd = hits[j - 1].readOffset + kmerLength - 1 ;
int seqStart = seqs[ hits[j - 1].indexHit.idx ].consensusLen, seqEnd = -1 ;
for ( k = i ; k < j ; ++k )
{
if ( hits[k].indexHit.offset < seqStart )
seqStart = hits[k].indexHit.offset ;
if ( hits[k].indexHit.offset > seqEnd )
seqEnd = hits[k].indexHit.offset ;
}
seqEnd += kmerLength - 1 ;
int leftOverhangSize = MIN( readStart, seqStart ) ;
int rightOverhangSize = MIN( readLen - 1 - readEnd,
seqs[ hits[i].indexHit.idx ].consensusLen - 1 - seqEnd ) ;
if ( leftOverhangSize > 2 * hitLenRequired || rightOverhangSize > 2 * hitLenRequired )
{
i = j ;
continue ;
}
}*/
//[i,j) holds the hits onto the same seq on the same strand.
if ( j - i < minHitRequired )
{
i = j ;
continue ;
}
if ( removeOnlyRepeats[( 1 + hits[i].strand ) / 2] )
{
bool hasUnique = false ;
for ( k = i ; k < j ; ++k )
{
if ( hits[k].repeats <= 10000 )
{
hasUnique = true ;
break ;
}
}
if ( !hasUnique )
{
i = j ;
continue ;
}
}
hitCoordDiff.Clear() ;
for ( k = i ; k < j ; ++k )
{
struct _triple nh ;
nh.a = hits[k].readOffset ;
nh.b = hits[k].indexHit.offset ;
nh.c = hits[k].readOffset - hits[k].indexHit.offset ;
hitCoordDiff.PushBack( nh ) ;
}
std::sort( hitCoordDiff.BeginAddress(), hitCoordDiff.EndAddress(), CompSortHitCoordDiff ) ;
// Pick the best concordant hits.
int s, e ;
int adjustRadius = radius ;
if ( !seqs[ hits[i].indexHit.idx ].isRef )
adjustRadius = 0 ;
for ( s = 0 ; s < j - i ; )
{
int diffSum = 0 ;
for ( e = s + 1 ; e < j - i ; ++e )
{
int diff = hitCoordDiff[e].c - hitCoordDiff[e - 1].c ;
if ( diff < 0 )
diff = -diff ;
if ( diff > adjustRadius )
break ;
diffSum += diff ;
}
//printf( "%d %d: %d %d\n", i, j, s, e ) ;
if ( e - s < minHitRequired
|| ( e - s ) * kmerLength < hitLenRequired )
{
s = e ;
continue ;
}
if ( removeOnlyRepeats[( 1 + hits[i].strand ) / 2] )
{
bool hasUnique = false ;
for ( k = s ; k < e ; ++k )
{
if ( hits[k].repeats <= 10000 )
{
hasUnique = true ;
break ;
}
}
if ( !hasUnique )
{
s = e ;
continue ;
}
}
// [s, e) holds the candidate in the array of hitCoordDiff
concordantHitCoord.Clear() ;
for ( k = s ; k < e ; ++k )
{
struct _pair nh ;
nh.a = hitCoordDiff[k].a ;
nh.b = hitCoordDiff[k].b ;
concordantHitCoord.PushBack( nh ) ;
}
if ( adjustRadius > 0 )
std::sort( concordantHitCoord.BeginAddress(), concordantHitCoord.EndAddress(), CompSortPairBInc ) ;
//for ( k = 0 ; k < e - s ; ++k )
// printf( "%d (%d-%d): %d %s %d %d\n", i, s, e, hits[i].indexHit.idx, seqs[ hits[i].indexHit.idx ].name, concordantHitCoord[k].a, concordantHitCoord[k].b ) ;
// Compute the longest increasing subsequence.
//printf( "lis for %d (%d %d; %d %d). strand=%d (%d)\n", e - s, i, j, s, e, hits[i].strand, seqs.size() ) ;
hitCoordLIS.Clear() ;
int lisSize = LongestIncreasingSubsequence( concordantHitCoord, hitCoordLIS ) ;
if ( lisSize * kmerLength < hitLenRequired )
{
s = e ;
continue ;
}
// Rebuild the hits.
int lisStart = 0 ;
int lisEnd = lisSize - 1 ;
// Ignore long insert gaps.
if ( isLongSeqSet )
{
int maxGap = 2 * hitLenRequired + 3 * kmerLength ;
if ( filter == 0 )//&& possibleOverlapCnt[( 1 + hits[i].strand ) / 2] > 1000 )
maxGap *= 4 ;
if ( maxGap < 200 )
maxGap = 200 ;
int max = -1 ;
for ( k = 0 ; k < lisSize ; )
{
int l ;
for ( l = k + 1 ; l < lisSize ; ++l )
{
if ( hitCoordLIS[l].a - hitCoordLIS[l - 1].a > maxGap )
break ;
}
if ( l - k > max )
{
max = l - k ;
lisStart = k ;
lisEnd = l - 1 ;
}
k = l ;
}
}
finalHits.Clear() ;
for ( k = lisStart ; k <= lisEnd ; ++k )
{
struct _hit nh = hits[i];
nh.readOffset = hitCoordLIS[k].a ;
nh.indexHit.offset = hitCoordLIS[k].b ;
//if (seqs.size() == 1 )
// printf( "%d: %d %d %d %d\n", i, nh.readOffset, nh.indexHit.idx, nh.indexHit.offset, nh.strand ) ;
finalHits.PushBack( nh ) ;
}
lisSize = lisEnd - lisStart + 1 ;
int hitLen = GetTotalHitLengthOnRead ( finalHits ) ;
if ( hitLen < hitLenRequired )
{
s = e ;
continue ;
}
else if ( GetTotalHitLengthOnSeq( finalHits ) < hitLenRequired )
{
s = e ;
continue ;
}
struct _overlap no ;
no.seqIdx = hits[i].indexHit.idx ;
no.readStart = finalHits[0].readOffset ;
no.readEnd = finalHits[ lisSize - 1 ].readOffset + kmerLength - 1 ;
no.strand = finalHits[0].strand ;
no.seqStart = finalHits[0].indexHit.offset ;
no.seqEnd = finalHits[ lisSize - 1 ].indexHit.offset + kmerLength - 1 ;
no.matchCnt = 2 * hitLen ;
no.similarity = 0 ;
if ( !seqs[ no.seqIdx ].isRef && hitLen * 2 < no.seqEnd - no.seqStart + 1 )
{
s = e ;
continue ;
}
no.hitCoords = new SimpleVector<struct _pair> ;
no.hitCoords->Reserve( lisSize ) ;
for ( k = 0 ; k < lisSize ; ++k )
{
struct _pair nh ;
nh.a = finalHits[k].readOffset ;
nh.b = finalHits[k].indexHit.offset ;
no.hitCoords->PushBack( nh ) ;
}
overlaps.push_back( no ) ;
s = e ;
} // iterate through concordant hits.
i = j ;
}
return overlaps.size() ;
}
// Find the overlaps from hits if it possibly span the CDR3 region and anchor paritally on V and J gene
int GetVJOverlapsFromHits( SimpleVector<struct _hit> &hits, std::vector<struct _overlap> &overlaps )
{
int i, j, k ;
SimpleVector<struct _hit> VJhits ;
int hitSize = hits.Size() ;
// Filter hits that are out of VJ junction region.
VJhits.Reserve( hitSize ) ;
for ( i = 0 ; i < hitSize ; ++i )
{
int seqIdx = hits[i].indexHit.idx ;
if ( !seqs[ seqIdx ].isRef )
continue ;
if ( seqs[ seqIdx ].name[3] == 'V' && hits[i].indexHit.offset >= seqs[ seqIdx ].consensusLen - 31 )
{
VJhits.PushBack( hits[i] ) ;
}
else if ( seqs[ seqIdx ].name[3] == 'J' && hits[i].indexHit.offset < 31 )
{
VJhits.PushBack( hits[i] ) ;
}
}
GetOverlapsFromHits( VJhits, 17, 0, overlaps ) ;
// Extract the best VJ pair
int overlapCnt = overlaps.size() ;
int maxMatchCnt = 0 ;
int tagi = 0, tagj = 0 ;
for ( i = 0 ; i < overlapCnt ; ++i )
{
for ( j = i + 1 ; j < overlapCnt ; ++j )
{
int seqIdxI = overlaps[i].seqIdx ;
int seqIdxJ = overlaps[j].seqIdx ;
if ( seqs[ seqIdxI ].name[0] != seqs[ seqIdxJ ].name[0] ||
seqs[ seqIdxI ].name[1] != seqs[ seqIdxJ ].name[1] ||
seqs[ seqIdxI ].name[2] != seqs[ seqIdxJ ].name[2] ||
seqs[ seqIdxI ].name[3] == seqs[ seqIdxJ ].name[3] )
continue ;
if ( seqs[ seqIdxI ].name[3] == 'V' )
{
if ( overlaps[i].readStart > overlaps[j].readStart )
continue ;
}
else
{
if ( overlaps[i].readStart < overlaps[j].readStart )
continue ;
}
if ( overlaps[i].matchCnt + overlaps[j].matchCnt > maxMatchCnt )
{
maxMatchCnt = overlaps[i].matchCnt + overlaps[j].matchCnt ;
tagi = i ;
tagj = j ;
}
}
}
if ( maxMatchCnt == 0 )
{
int size = overlaps.size() ;
for ( i = 0 ; i < size ; ++i )
{
overlaps[i].hitCoords->Release() ;
delete overlaps[i].hitCoords ;
overlaps[i].hitCoords = NULL ;
}
overlaps.clear() ;
return 0 ;
}
int size = overlaps.size() ;
for ( i = 0 ; i < size ; ++i )
{
if ( i == tagi || i == tagj )
continue ;
overlaps[i].hitCoords->Release() ;
delete overlaps[i].hitCoords ;
overlaps[i].hitCoords = NULL ;
}
std::vector<struct _overlap> ret ;
ret.push_back( overlaps[ tagi ] ) ;
ret.push_back( overlaps[ tagj ] ) ;
overlaps = ret ;
return 2 ;
}
// Extend the overlap to include the overhang parts and filter the overlaps if the overhang does not match well.
// return: whether this is a valid extension or not
int ExtendOverlap( char *r, int len, struct _seqWrapper &seq, double mismatchThresholdFactor,
char *align, struct _overlap &overlap, struct _overlap &extendedOverlap )
{
// Check whether the overhang part is compatible with each other or not.
// Extension to 5'-end ( left end )
int matchCnt, mismatchCnt, indelCnt ;
int leftOverhangSize = MIN( overlap.readStart, overlap.seqStart ) ;
int ret = 1 ;
int i, k ;
int goodLeftOverhangSize = 0 ;
//AlignAlgo::GlobalAlignment( seq.consensus + overlap.seqStart - leftOverhangSize,
AlignAlgo::GlobalAlignment_PosWeight( seq.posWeight.BeginAddress() + overlap.seqStart - leftOverhangSize,
leftOverhangSize,
r + overlap.readStart - leftOverhangSize, leftOverhangSize, align ) ;
GetAlignStats( align, false, matchCnt, mismatchCnt, indelCnt ) ;
if ( indelCnt > 0 )
{