-
Notifications
You must be signed in to change notification settings - Fork 479
/
Copy pathinference_severity.py
84 lines (66 loc) · 3.97 KB
/
inference_severity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import tensorflow as tf
import os, argparse
from data import process_image_file
from collections import defaultdict
def score_prediction(softmax, step_size):
vals = np.arange(3) * step_size + (step_size / 2.)
vals = np.expand_dims(vals, axis=0)
return np.sum(softmax * vals, axis=-1)
class MetaModel:
def __init__(self, meta_file, ckpt_file):
self.meta_file = meta_file
self.ckpt_file = ckpt_file
self.graph = tf.Graph()
with self.graph.as_default():
self.saver = tf.train.import_meta_graph(self.meta_file)
self.input_tr = self.graph.get_tensor_by_name('input_1:0')
self.phase_tr = self.graph.get_tensor_by_name('keras_learning_phase:0')
self.output_tr = self.graph.get_tensor_by_name('MLP/dense_1/MatMul:0')
def infer(self, image):
with tf.Session(graph=self.graph) as sess:
self.saver.restore(sess, self.ckpt_file)
outputs = defaultdict(list)
outs = sess.run(self.output_tr,
feed_dict={
self.input_tr: np.expand_dims(image, axis=0),
self.phase_tr: False
})
outputs['logits'].append(outs)
for k in outputs.keys():
outputs[k] = np.concatenate(outputs[k], axis=0)
outputs['softmax'] = np.exp(outputs['logits']) / np.sum(
np.exp(outputs['logits']), axis=-1, keepdims=True)
outputs['score'] = score_prediction(outputs['softmax'], 1 / 3.)
return outputs['score']
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='COVID-Net Lung Severity Scoring')
parser.add_argument('--weightspath_geo', default='models/COVIDNet-SEV-GEO', type=str, help='Path to output folder')
parser.add_argument('--weightspath_opc', default='models/COVIDNet-SEV-OPC', type=str, help='Path to output folder')
parser.add_argument('--metaname', default='model.meta', type=str, help='Name of ckpt meta file')
parser.add_argument('--ckptname', default='model', type=str, help='Name of model ckpts')
parser.add_argument('--imagepath', default='assets/ex-covid.jpeg', type=str, help='Full path to image to perfom scoring on')
parser.add_argument('--input_size', default=480, type=int, help='Size of input (ex: if 480x480, --input_size 480)')
parser.add_argument('--top_percent', default=0.08, type=float, help='Percent top crop from top of image')
args = parser.parse_args()
x = process_image_file(args.imagepath, args.input_size, top_percent=args.top_percent)
x = x.astype('float32') / 255.0
# check if models exists
infer_geo = os.path.exists(os.path.join(args.weightspath_geo, args.metaname))
infer_opc = os.path.exists(os.path.join(args.weightspath_opc, args.metaname))
if infer_geo:
model_geo = MetaModel(os.path.join(args.weightspath_geo, args.metaname),
os.path.join(args.weightspath_geo, args.ckptname))
output_geo = model_geo.infer(x)
print('Geographic severity: {:.3f}'.format(output_geo[0]))
print('Geographic extent score for right + left lung (0 - 8): {:.3f}'.format(output_geo[0]*8))
print('For each lung: 0 = no involvement; 1 = <25%; 2 = 25-50%; 3 = 50-75%; 4 = >75% involvement.')
if infer_opc:
model_opc = MetaModel(os.path.join(args.weightspath_opc, args.metaname),
os.path.join(args.weightspath_opc, args.ckptname))
output_opc = model_opc.infer(x)
print('Opacity severity: {:.3f}'.format(output_opc[0]))
print('Opacity extent score for right + left lung (0 - 8): {:.3f}'.format(output_opc[0]*8))
print('For each lung, the score is from 0 to 4, with 0 = no opacity and 4 = white-out.')
print('**DISCLAIMER**')
print('Do not use this prediction for self-diagnosis. You should check with your local authorities for the latest advice on seeking medical assistance.')