-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathencoder.py
41 lines (35 loc) · 1.91 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch, math
from transformers import BertTokenizer, XLNetTokenizer, RobertaTokenizer, LongformerTokenizer
import logging
log = logging.getLogger()
def encode_documents(documents: list, tokenizer: BertTokenizer, max_input_length):
tokenized_documents = [tokenizer.tokenize(document) for document in documents]
max_sequences_per_document = math.ceil(max(len(x)/(max_input_length-2) for x in tokenized_documents))
output = torch.zeros(size=(len(documents), max_sequences_per_document, 3, max_input_length), dtype=torch.long)
document_seq_lengths = []
for doc_index, tokenized_document in enumerate(tokenized_documents):
max_seq_index = 0
for seq_index, i in enumerate(range(0, len(tokenized_document), (max_input_length-2))):
raw_tokens = tokenized_document[i:i+(max_input_length-2)]
tokens = []
input_type_ids = []
tokens.append("[CLS]")
input_type_ids.append(0)
for token in raw_tokens:
tokens.append(token)
input_type_ids.append(0)
tokens.append("[SEP]")
input_type_ids.append(0)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
attention_masks = [1] * len(input_ids)
while len(input_ids) < max_input_length:
input_ids.append(0)
input_type_ids.append(0)
attention_masks.append(0)
output[doc_index][seq_index] = torch.cat((torch.LongTensor(input_ids).unsqueeze(0),
torch.LongTensor(input_type_ids).unsqueeze(0),
torch.LongTensor(attention_masks).unsqueeze(0)),
dim=0)
max_seq_index = seq_index
document_seq_lengths.append(max_seq_index+1)
return output, torch.LongTensor(document_seq_lengths)