-
Notifications
You must be signed in to change notification settings - Fork 152
/
Copy pathTextMining.py
362 lines (351 loc) · 17.4 KB
/
TextMining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
# coding: utf-8
from __future__ import division
__author__ = 'LiNing'
import os
import shutil
import re
import math
import nltk
import jieba
import jieba.analyse
import pymongo
import datetime
import numpy as np
try:
import cPickle as pickle
except ImportError:
import pickle
try:
import simplejson as json
except ImportError:
import json
from TextConfig import *
from TextProcess import *
from SendMail import *
def MakeTextMining(*para):
posts, \
time_col, content_col, source_col, t_status_col, keyword_col, country_col, imp_col, limit_number, \
lag, stopwords_set, blackwords_set, writewords_set, \
all_words_tf_dict, all_words_idf_dict, train_datas, test_speedup = para
train_datas_count = len(train_datas)
## --------------------------------------------------------------------------------
'''
id_dict = {
"NotPass":{
id:None,
...
},
"Pass":{
id:(tags,country,imp),
...
}
}
'''
id_dict = {
"NotPass":{},
"Pass":{}
}
## --------------------------------------------------------------------------------
## 生成分类器模型
feature_selection_flag = False
my_selector = None
if test_speedup and os.path.exists(fea_dict_file) and os.path.exists(best_clf_file):
words_feature = []
with open(fea_dict_file, 'r') as fp:
for line in fp.readlines():
word_feature = line.strip().decode("utf-8")
words_feature.append(word_feature)
if feature_selection_flag:
with open(best_clf_file, "rb") as fp_pickle:
my_selector, best_clf = pickle.load(fp_pickle)
else:
with open(best_clf_file, "rb") as fp_pickle:
best_clf = pickle.load(fp_pickle)
else:
## --------------------------------------------------------------------------------
words_feature = MakeFeatureWordsDict(all_words_tf_dict, stopwords_set, writewords_set, lag, fea_dict_size)
train_features = []
train_class = []
for train_data in train_datas:
TextFeatureClass = TextFeature(words_feature, train_data[0])
train_features.append(TextFeatureClass.TextBool()) #### 可以调整特征抽取,训练集与测试集保持一致
train_class.append(int(train_data[1])) # str转为int
train_features = np.array(train_features)
train_class = np.array(train_class)
if feature_selection_flag:
FeatureSelectorClass = FeatureSelector(train_features, train_class)
my_selector, train_features = FeatureSelectorClass.PCA_Selector() #### 可以调整特征选择
start_time_train = datetime.datetime.now()
ClassifierTrainClass = ClassifierTrain(train_features, train_class)
best_clf = ClassifierTrainClass.LR() #### 可以调整分类器训练
end_time_train = datetime.datetime.now()
print "best_clf training last time:", end_time_train-start_time_train
if not os.path.exists(Classifier_Dir):
os.makedirs(Classifier_Dir)
with open(fea_dict_file, 'w') as fp:
for word_feature in words_feature:
fp.writelines(word_feature.encode("utf-8")) # 将unicode转换为utf-8
fp.writelines("\n")
if feature_selection_flag:
with open(best_clf_file, "wb") as fp_pickle:
pickle.dump((my_selector, best_clf), fp_pickle)
else:
with open(best_clf_file, "wb") as fp_pickle:
pickle.dump(best_clf, fp_pickle)
## --------------------------------------------------------------------------------
delta = datetime.timedelta(days=0, hours=8, minutes=0, seconds=0) # UTC刚好比CST晚8小时
end_time = datetime.datetime.now()-delta
start_time = end_time-datetime.timedelta(days=0, hours=0, minutes=30, seconds=0)-delta ## 可以修改查询的时间区段
for post in posts.find({ ##################################### 查询操作
time_col:{"$gte":start_time, "$lte":end_time},
content_col:{"$exists":1},
source_col:{"$exists":1},
t_status_col:0, # 未发布的
keyword_col:{"$exists":0}, country_col:{"$exists":0}, imp_col:{"$exists":0},
},).sort(time_col, -1).limit(limit_number):
## --------------------------------------------------------------------------------
# print post
if post[content_col] is not None:
# print post[content_col]
textseg_list = TextSeg(post[content_col], lag)
textseg_set = set(textseg_list)
## --------------------------------------------------------------------------------
#### 文本过滤
if textseg_set & blackwords_set:
print '{"_id":ObjectId("%s")} In Blackwords' % post["_id"]
id_dict["NotPass"][post["_id"]] = None
elif len(textseg_set)<=5 or len(textseg_list)<=10:
print '{"_id":ObjectId("%s")} Too Short' % post["_id"]
id_dict["NotPass"][post["_id"]] = None
else:
## --------------------------------------------------------------------------------
# ## 文本去重
# if textseg_set not in id_dict["Pass"].values():
# id_dict["Pass"][post["_id"]] = textseg_set
# else:
# print '{"_id":ObjectId("%s")} Duplicate' % post["_id"]
# id_dict["NotPass"][post["_id"]] = None
## --------------------------------------------------------------------------------
## 文本去重
if id_dict["Pass"] == {}:
id_dict["Pass"][post["_id"]] = textseg_set
else:
flag = 1
k_list = id_dict["Pass"].keys()
for k in k_list:
# if id_dict["Pass"][k] & textseg_set == textseg_set: # 如果元素包含textseg_set,则不添加,包括二者相等情况
# flag = 0
# print '{"_id":ObjectId("%s")} Duplicate' % post["_id"]
# id_dict["NotPass"][post["_id"]] = None
# break
# elif id_dict["Pass"][k] & textseg_set == id_dict["Pass"][k]: # 如果textseg_set包含元素,则除去元素添加textseg_set
# id_dict["Pass"].pop(k)
# print '{"_id":ObjectId("%s")} Duplicate' % k
# id_dict["NotPass"][k] = None
# else:
# pass
if 1-len(id_dict["Pass"][k] & textseg_set)/len(textseg_set) <= 0.2: # 如果元素包含textseg_set,则不添加,包括二者相等情况
flag = 0
print '{"_id":ObjectId("%s")} Duplicate' % post["_id"]
id_dict["NotPass"][post["_id"]] = None
break
elif 1-len(id_dict["Pass"][k] & textseg_set)/len(id_dict["Pass"][k]) <= 0.2: # 如果textseg_set包含元素,则除去元素添加textseg_set
id_dict["Pass"].pop(k)
print '{"_id":ObjectId("%s")} Duplicate' % k
id_dict["NotPass"][k] = None
else:
pass
if flag:
id_dict["Pass"][post["_id"]] = textseg_set
## --------------------------------------------------------------------------------
else:
print '{"_id":ObjectId("%s")} None' % post["_id"]
id_dict["NotPass"][post["_id"]] = None
## --------------------------------------------------------------------------------
len_pass, len_notpass = len(id_dict["Pass"]), len(id_dict["NotPass"])
print "number", len_pass+len_notpass
if len_pass+len_notpass>0:
print "Pass Rate: %.2f%%" % (len_pass/(len_pass+len_notpass)*100)
## --------------------------------------------------------------------------------0
for post in posts.find({"_id":{"$in":id_dict["Pass"].keys()}}):
# print post[content_col]
textseg_list = TextSeg(post[content_col], lag)
textseg_set = set(textseg_list)
## --------------------------------------------------------------------------------
#### 文本关键词提取
TextExtractTagsClass = TextExtractTags(textseg_list, stopwords_set, writewords_set, topK=3)
# tags = TextExtractTagsClass.Tags_Words_Feature(words_feature)
tags = TextExtractTagsClass.Tags_Tf(lag)
# tags = TextExtractTagsClass.Tags_IDf(all_words_idf_dict, train_datas_count, lag)
# tags = TextExtractTagsClass.Tags_TfIDf(all_words_idf_dict, train_datas_count, lag)
print '{"_id":ObjectId("%s")} ' % post["_id"],
for tag in tags:
print tag,
print ""
## --------------------------------------------------------------------------------
#### 文本分类
TextFeatureClass = TextFeature(words_feature, textseg_list)
test_features = TextFeatureClass.TextBool() #### 可以调整特征抽取,训练集与测试集保持一致
test_features = np.array(test_features)
'''
Reshape your data
either using X.reshape(-1, 1) if your data has a single feature
or X.reshape(1, -1) if it contains a single sample.
'''
test_features = test_features.reshape(1, -1)
if feature_selection_flag:
test_features = my_selector.transform(test_features)
test_class = best_clf.predict(test_features)
print '{"_id":ObjectId("%s")} ' % post["_id"], Number_Country_Map[str(test_class[0])] # int转为str
## --------------------------------------------------------------------------------
#### 文本推荐
level = "1"
if datetime.time(0, 0, 0)<post[time_col].time()<datetime.time(6, 0, 0) or len(textseg_set)>=10 and len(textseg_list)>=20:
level = "2"
digits = [word for word in textseg_list if word.isdigit()]
if len(textseg_set & writewords_set)>=1 and len(digits)>=2 and len(textseg_set)>=10 and len(textseg_list)>=20:
level = "3"
print '{"_id":ObjectId("%s")} ' % post["_id"], level
## --------------------------------------------------------------------------------
id_dict["Pass"][post["_id"]] = (tags, Number_Country_Map[str(test_class[0])], level)
## --------------------------------------------------------------------------------
return id_dict
def MakeTextMining_ClassifyTest(*para):
posts, \
time_col, content_col, source_col, t_status_col, keyword_col, country_col, imp_col, limit_number, \
lag, stopwords_set, blackwords_set, writewords_set, \
all_words_tf_dict, all_words_idf_dict, train_datas, test_speedup = para
## --------------------------------------------------------------------------------
'''
id_dict = {
"NotPass":{
id:None,
...
},
"Pass":{
id:(tags,country,imp),
...
}
}
'''
id_dict = {
"NotPass":{},
"Pass":{}
}
## --------------------------------------------------------------------------------
## 生成分类器模型
feature_selection_flag = False
my_selector = None
if test_speedup and os.path.exists(fea_dict_file) and os.path.exists(best_clf_file):
words_feature = []
with open(fea_dict_file, 'r') as fp:
for line in fp.readlines():
word_feature = line.strip().decode("utf-8")
words_feature.append(word_feature)
if feature_selection_flag:
with open(best_clf_file, "rb") as fp_pickle:
my_selector, best_clf = pickle.load(fp_pickle)
else:
with open(best_clf_file, "rb") as fp_pickle:
best_clf = pickle.load(fp_pickle)
else:
## --------------------------------------------------------------------------------
words_feature = MakeFeatureWordsDict(all_words_tf_dict, stopwords_set, writewords_set, lag, fea_dict_size)
train_features = []
train_class = []
for train_data in train_datas:
TextFeatureClass = TextFeature(words_feature, train_data[0])
train_features.append(TextFeatureClass.TextBool()) #### 可以调整特征抽取,训练集与测试集保持一致
train_class.append(int(train_data[1])) # str转为int
train_features = np.array(train_features)
train_class = np.array(train_class)
if feature_selection_flag:
FeatureSelectorClass = FeatureSelector(train_features, train_class)
my_selector, train_features = FeatureSelectorClass.PCA_Selector() #### 可以调整特征选择
start_time_train = datetime.datetime.now()
ClassifierTrainClass = ClassifierTrain(train_features, train_class)
best_clf = ClassifierTrainClass.LR() #### 可以调整分类器训练
end_time_train = datetime.datetime.now()
print "best_clf training last time:", end_time_train-start_time_train
if not os.path.exists(Classifier_Dir):
os.makedirs(Classifier_Dir)
with open(fea_dict_file, 'w') as fp:
for word_feature in words_feature:
fp.writelines(word_feature.encode("utf-8")) # 将unicode转换为utf-8
fp.writelines("\n")
if feature_selection_flag:
with open(best_clf_file, "wb") as fp_pickle:
pickle.dump((my_selector, best_clf), fp_pickle)
else:
with open(best_clf_file, "wb") as fp_pickle:
pickle.dump(best_clf, fp_pickle)
## --------------------------------------------------------------------------------
start_time = datetime.datetime(2014, 1, 1)
end_time = datetime.datetime.now()
count = 0
correct_count = 0
for post in posts.find({ ##################################### 查询操作
time_col:{"$gte":start_time, "$lte":end_time},
content_col:{"$exists":1},
source_col:{"$exists":1},
t_status_col:1, # 已发布的
keyword_col:{"$exists":1}, country_col:{"$exists":1}, imp_col:{"$exists":1},
},): #.sort(time_col, -1).limit(limit_number):
## --------------------------------------------------------------------------------
# print post
if post[content_col] is not None:
# print post[content_col]
textseg_list = TextSeg(post[content_col], lag)
count += 1
## --------------------------------------------------------------------------------
#### 文本分类
TextFeatureClass = TextFeature(words_feature, textseg_list)
test_features = TextFeatureClass.TextBool() #### 可以调整特征抽取,训练集与测试集保持一致
test_features = np.array(test_features)
'''
Reshape your data
either using X.reshape(-1, 1) if your data has a single feature
or X.reshape(1, -1) if it contains a single sample.
'''
test_features = test_features.reshape(1, -1)
test_class = best_clf.predict(test_features)
if Number_Country_Map[str(test_class[0])] == post[country_col]:
correct_count += 1
print '{"_id":ObjectId("%s")} ' % post["_id"], Number_Country_Map[str(test_class[0])] # int转为str
else:
print '{"_id":ObjectId("%s")} None' % post["_id"]
print "number of all the train datas:", count
print "all correct classification data number:", correct_count
if count>0:
print "accuracy of classification: %.2f%%" % (correct_count/count*100)
def MakeTextMining_Calendar(*para):
posts, \
time_col, content_col, source_col, t_status_col, keyword_col, country_col, imp_col, limit_number, \
lag, stopwords_set, blackwords_set, writewords_set, \
all_words_tf_dict, all_words_idf_dict, train_datas, test_speedup = para
## --------------------------------------------------------------------------------
start_time = datetime.datetime(2014, 1, 1)
end_time = datetime.datetime.now()
count = 0
count_cal = 0
source_dict = {}
for post in posts.find({ ##################################### 查询操作
time_col:{"$gte":start_time, "$lte":end_time},
content_col:{"$exists":1},
source_col:{"$exists":1},
"datatype":{"$exists":1},
},):
count += 1
if source_dict.has_key(post[source_col]):
source_dict[post[source_col]] += 1
else:
source_dict[post[source_col]] = 1
if post[source_col] == "fx168":
print post[content_col]
count_cal += 1
print "count:", count_cal, "count_cal:", count_cal
if count>0:
print "calendar rate: %.2f%%" % (count_cal/count*100)
sorted_source = sorted(source_dict.items(), key=lambda f:f[1], reverse=True)
for k, v in sorted_source:
print k, v