-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathridgecv_op_rbcu.py
1243 lines (1123 loc) · 57.4 KB
/
ridgecv_op_rbcu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python2
#coding: utf-8
from __future__ import division
import os
import shutil
import csv
import copy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
plt.style.use('ggplot')
import seaborn as sns
from pandas.tseries.offsets import Milli
import datetime
from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, ElasticNetCV
from sklearn.svm import SVR, LinearSVR
from sklearn.neighbors import KNeighborsRegressor
import optunity
import optunity.metrics
from optunity.constraints import wrap_constraints
from optunity.solvers.GridSearch import GridSearch
from optunity.solvers.ParticleSwarm import ParticleSwarm
import multiprocessing
import gc
try:
import cPickle as pickle
except ImportError:
import pickle
##########################################################################################
class predict():
def __init__(self, file_path='IF.csv'):
self.file_path = file_path
self.skip_rows = 30000
self.nrows = 30000
assert self.skip_rows >= self.nrows
self.data = None
self.features = None
self.timeshift = 1
self.resample = 1
assert self.timeshift >= self.resample
self.maxlag = 17
self.indices = None
self.cross_predict_days = None
self.cross_predict_periods = None
self.cross_predict_num = None
self.cross_predict_reindex = 0
self.windowsize = 5000
self.threshold = 0
self.Close_test = None
self.X_test = None
self.Close_train = None
self.X_train = None
self.y_train = None
self.diff_train = None
self.step = 8*60 # update model by step
self.real_time_report = True
#### you can change optunity target here!!!
self.target = 'adjusted_sigsum' # 'accuracy', 'sigsum', 'sig_per_trade', 'adjusted_sigsum'
self.y_pred = np.array([])
self.y_targets = np.array([])
self.diff_targets = np.array([])
self.results_pred = []
self.logs = True
self.algorithm = 'ridgecv'
def dataProcess(self, load_data=True):
if load_data is True:
self.data = self.loadTimeSeriesDataPro() # Read in data
## ---------------------------------------------------------------------------------------
# day_night_list = []
# data_time = self.data.Time
# for idx in xrange(self.data.shape[0]):
# if '09:00:00'<=data_time.iloc[idx]<='15:00:00':
# day_night_list.append('day')
# elif '21:00:00'<=data_time.iloc[idx]<='23:59:59' or '00:00:00'<=data_time.iloc[idx]<='01:00:00':
# day_night_list.append('night')
# else:
# day_night_list.append('')
# self.data['day_night'] = day_night_list
# data_day = self.data.ix[self.data['day_night']=='day']
# data_night = self.data.ix[self.data['day_night']=='night']
## ---------------------------------------------------------------------------------------
# self.removeDuplicate()
# self.removeOutOfTradingtime()
self.features = self.generateLagMatrix().astype(np.float16)
#### save the data and features
# with open('./data_feature', 'wb') as fp:
# pickle.dump((self.data, self.features), fp)
else:
if os.path.exists('./data_feature'):
with open('./data_feature', 'rb') as fp:
self.data, self.features = pickle.load(fp)
else:
self.data, self.features = None, None
def loadTimeSeriesData(self):
assert self.skip_rows >= self.nrows
def count_lines(filename):
count = 0
buffer_size = 1024*1024
with open(filename,'rb') as f:
while 1:
temp = f.read(buffer_size)
if not temp:
break
count += temp.count('\n')
return count
lines = count_lines(self.file_path)
# lines = np.sum(1 for _ in csv.reader(open(self.file_path)))
# print lines
if lines < self.skip_rows:
self.skip_rows = lines
if lines < self.nrows:
self.nrows = lines
# data = pd.read_csv(self.file_path, header=None, engine='c')
data = pd.read_csv(self.file_path,
engine='c',
header=None,
usecols=[0,1,2,4,6],
names=['Date','Time','Low','High','Close'],
skiprows=lines-self.skip_rows,
nrows=self.nrows,
) # read the latest nrows
# print data.groupby(data.Date).size() # describe data size order by Date
data.index = pd.to_datetime(data.Date+' '+data.Time+'.0',format='%Y-%m-%d %H:%M:%S.%f')
# data.sort_index(axis=0, ascending=True, inplace=True) # Sort the data by time index
data.drop_duplicates(keep='first', inplace=True) # Remove duplicate column
# del data['Date'], data['Time']
return data
def loadTimeSeriesDataPro(self):
assert self.skip_rows >= self.nrows
def count_lines(filename):
count = 0
buffer_size = 1024*1024
with open(filename,'rb') as f:
while 1:
temp = f.read(buffer_size)
if not temp:
break
count += temp.count('\n')
return count
lines = count_lines(self.file_path)
# lines = np.sum(1 for _ in csv.reader(open(self.file_path)))
# print lines
if lines < self.skip_rows:
self.skip_rows = lines
if lines < self.nrows:
self.nrows = lines
# data = pd.read_csv(self.file_path, header=None, engine='c')
data = pd.read_csv(self.file_path,
engine='c',
header=None,
usecols=[0,1,2,3,4,5,6],
names=['Date','Time','Open','High','Low','Close','Volume'],
skiprows=lines-self.skip_rows,
nrows=self.nrows,
) # read the latest nrows
# print data.groupby(data.Date).size() # describe data size order by Date
data.index = pd.to_datetime(data.Date+' '+data.Time+'.0',format='%Y-%m-%d %H:%M:%S.%f')
# data.sort_index(axis=0, ascending=True, inplace=True) # Sort the data by time index
data.drop_duplicates(keep='first', inplace=True) # Remove duplicate column
# del data['Date'], data['Time']
return data
def removeDuplicate(self):
uniques = np.unique(self.data.index, return_index=True)[1]
uniques.sort()
# print uniques
#### calculate index count
# new_uniques = np.append(uniques, len(self.data.index))
# diff_new_uniques = np.diff(new_uniques)
# # print diff_new_uniques
# count1, count2, count_other = 0, 0, 0
# for i, x in enumerate(diff_new_uniques):
# if x == 1:
# # print self.data.index[new_uniques[i]]
# count1 += 1
# elif x == 2:
# # print self.data.index[new_uniques[i]]
# count2 += 1
# else:
# count_other += 1
# print count1, count2, count_other
self.data['new_index'] = self.data.index+Milli(500)
self.data['new_index'].ix[uniques] -= Milli(500)
self.data.set_index('new_index', drop=True, append=False, inplace=True)
uniques_ = np.unique(self.data.index, return_index=True)[1]
uniques_.sort()
self.data = self.data.ix[uniques_]
'''
self.data = self.data.ix[np.unique(self.data.index, return_index=True)[1]] # Remove duplicate data
'''
'''
position_dict = {}
k, last_index = 0, None
for index in self.data.index:
if index != last_index:
position_dict[index] = k
# else:
# print 'Same timestamp %s' % index
k += 1
last_index = index
self.data = self.data.ix[np.sort(position_dict.values())]
'''
def removeOutOfTradingtime(self):
def isInTradingTime(timestamp):
trading_time = timestamp.time()
starttime1 = datetime.time(9, 15)
stoptime1 = datetime.time(11, 30)
starttime2 = datetime.time(13, 0)
stoptime2 = datetime.time(15, 15)
if starttime1<=trading_time<=stoptime1 or starttime2<=trading_time<=stoptime2:
return True
else:
return False
index = [item for item in self.data.index if isInTradingTime(item)]
self.data = self.data.ix[index]
def generateLagMatrix(self):
def Price_change_ratio(price1, price2):
# delta = price1 / price2-1
delta = price1-price2
return delta
self.data['Middle'] = (self.data['High']+self.data['Low'])/2.0
features = pd.DataFrame(index=self.data.index)
MAX = 100
# for i_shift in np.arange(1, MAX+1, 1):
# features['Close_lag_' +str(i_shift)] = Price_change_ratio(self.data.Close.shift(i_shift), self.data.Close)
# features['Middle_lag_'+str(i_shift)] = Price_change_ratio(self.data.Middle.shift(i_shift), self.data.Middle)
for i_shift in np.arange(1, MAX+1, 1):
features['Close_lag_' +str(i_shift)] = Price_change_ratio(self.data.Close.shift(i_shift), self.data.Close.shift(i_shift-1))
features['Middle_lag_'+str(i_shift)] = Price_change_ratio(self.data.Middle.shift(i_shift), self.data.Middle.shift(i_shift-1))
# features = features.fillna(0)
features = features.drop(features.index[:MAX+1])
self.data = self.data.drop(self.data.index[:MAX+1])
return features
def selectFeatures(self):
self.features = self.features.ix[:, :self.maxlag*2]
def targetDefine(self, threshold=0.0):
self.data['Diff'] = self.data.Close.diff(self.timeshift).shift(-self.timeshift).fillna(0)
pos = pd.Series(self.data['Diff']>threshold).astype(int)
neg = -pd.Series(self.data['Diff']<-threshold).astype(int)
self.data['Label'] = pos+neg
self.data['Diff_'] = self.data.Close.diff(self.resample).shift(-self.resample).fillna(0)
pos_ = pd.Series(self.data['Diff_']>threshold).astype(int)
neg_ = -pd.Series(self.data['Diff_']<-threshold).astype(int)
self.data['Label_'] = pos_+neg_
def run(self, mode='test'):
if mode == 'forward':
i_shift = 0
self.indices = []
if self.cross_predict_days is not None:
self.daysToIndices(i_shift)
elif self.cross_predict_periods is not None:
self.periodsToIndices(i_shift)
elif self.cross_predict_num is not None:
self.numToIndices(i_shift)
else:
pass
self.cross_predict_num = len(self.indices)
print 'cross_predict_num:', self.cross_predict_num
y_pred_array = np.zeros(self.cross_predict_num)
y_targets_array = np.zeros(self.cross_predict_num)
diff_targets_array = np.zeros(self.cross_predict_num)
Regression = None
local_threshold = 0
for i_cross_predict in np.arange(self.cross_predict_num):
#### the test sets
test_index = self.indices[i_cross_predict]
# print test_index
self.Close_test = self.data.Close.ix[test_index]
self.X_test = self.features.ix[test_index]
y_target = self.data.Label_.ix[test_index]
diff_target = self.data.Diff_.ix[test_index]
#### the train sets
if i_cross_predict%self.step == 0:
start_index = test_index-self.windowsize-self.timeshift+1
end_index = test_index-self.timeshift+1
# print start_index
# print end_index
if start_index < 0:
start_index = 0
self.Close_train = self.data.Close.ix[start_index:end_index]
self.X_train = self.features.ix[start_index:end_index]
self.y_train = self.data.Label.ix[start_index:end_index]
self.diff_train = self.data.Diff.ix[start_index:end_index]
if self.algorithm == 'ridgecv':
Regression = RidgeCV().fit(self.X_train, self.diff_train)
elif self.algorithm == 'elasticnetcv':
Regression = ElasticNetCV().fit(self.X_train, self.diff_train)
elif self.algorithm == 'knnreg':
k = 200
Regression = KNeighborsRegressor(algorithm='auto', n_neighbors=k).fit(self.X_train, self.diff_train)
elif self.algorithm == 'linearsvr':
Regression = LinearSVR().fit(self.X_train, self.diff_train)
# Regression = SVR(kernel='linear').fit(self.X_train, self.diff_train)
else:
Regression = None
# abs_diffs = np.sort(np.abs(self.diff_train))
X_diff_pred = Regression.predict(self.X_train)
abs_diffs = np.sort(np.abs(X_diff_pred))
if self.threshold == 0:
local_threshold = 0
elif self.threshold == 100:
local_threshold = abs_diffs[-1]
else:
threshold_index = int(len(abs_diffs)*self.threshold*0.01)
local_threshold = abs_diffs[threshold_index]
#### prediction stage
y_diff_pred = Regression.predict(self.X_test.reshape(1, -1))[-1] # Only one predict in the result
if np.abs(y_diff_pred) < local_threshold:
y_pred = 0
elif y_diff_pred > 0.0:
y_pred = 1
elif y_diff_pred < 0.0:
y_pred = -1
else:
y_pred = 0
# print 'Last point:%s close: %6.1f Prediction for next point: %2d' % (self.X_test.name, self.Close_test, y_pred)
if self.logs:
self.results_pred.append('%s\t%2d' % (self.X_test.name, y_pred))
y_pred_array[i_cross_predict] = y_pred
y_targets_array[i_cross_predict] = y_target
diff_targets_array[i_cross_predict] = diff_target
#### describe
accuracy_list, sigsum, real_sigsum, adjusted_sigsum, trade_count, sig_per_trade = self.resultsDescribe(y_pred_array, y_targets_array, diff_targets_array)
self.y_pred = np.append(self.y_pred, y_pred_array)
self.y_targets = np.append(self.y_targets, y_targets_array)
self.diff_targets = np.append(self.diff_targets, diff_targets_array)
last_accuracy = accuracy_list[-1]
last_sigsum = sigsum[-1]
last_adjusted_sigsum = adjusted_sigsum[-1]
last_trade_count = trade_count[-1]
last_sig_per_trade = sig_per_trade[-1]
return last_accuracy, last_sigsum, last_adjusted_sigsum, last_trade_count, last_sig_per_trade
elif mode == 'test':
last_accuracy_list = np.array([])
last_sigsum_list = np.array([])
last_sig_per_trade_list = np.array([])
last_adjusted_sigsum_list = np.array([])
last_trade_count_list = np.array([])
for i_shift in np.arange(self.resample):
self.indices = []
if self.cross_predict_days is not None:
self.daysToIndices(i_shift)
elif self.cross_predict_periods is not None:
self.periodsToIndices(i_shift)
elif self.cross_predict_num is not None:
self.numToIndices(i_shift)
else:
pass
self.cross_predict_num = len(self.indices)
print 'cross_predict_num:', self.cross_predict_num
y_pred_array = np.zeros(self.cross_predict_num)
y_targets_array = np.zeros(self.cross_predict_num)
diff_targets_array = np.zeros(self.cross_predict_num)
Regression = None
local_threshold = 0
for i_cross_predict in np.arange(self.cross_predict_num):
#### the test sets
test_index = self.indices[i_cross_predict]
# print test_index
self.Close_test = self.data.Close.ix[test_index]
self.X_test = self.features.ix[test_index]
y_target = self.data.Label_.ix[test_index]
diff_target = self.data.Diff_.ix[test_index]
#### the train sets
if i_cross_predict%self.step == 0:
start_index = test_index-self.windowsize-self.timeshift+1
end_index = test_index-self.timeshift+1
# print start_index
# print end_index
if start_index < 0:
start_index = 0
self.Close_train = self.data.Close.ix[start_index:end_index]
self.X_train = self.features.ix[start_index:end_index]
self.y_train = self.data.Label.ix[start_index:end_index]
self.diff_train = self.data.Diff.ix[start_index:end_index]
if self.algorithm == 'ridgecv':
Regression = RidgeCV().fit(self.X_train, self.diff_train)
elif self.algorithm == 'elasticnetcv':
Regression = ElasticNetCV().fit(self.X_train, self.diff_train)
elif self.algorithm == 'knnreg':
k = 200
Regression = KNeighborsRegressor(algorithm='auto', n_neighbors=k).fit(self.X_train, self.diff_train)
elif self.algorithm == 'linearsvr':
Regression = LinearSVR().fit(self.X_train, self.diff_train)
# Regression = SVR(kernel='linear').fit(self.X_train, self.diff_train)
else:
Regression = None
if self.threshold == 0:
local_threshold = 0
else:
X_diff_pred = Regression.predict(self.X_train)
abs_diffs = np.sort(np.abs(X_diff_pred))
threshold_index = int(len(abs_diffs)*self.threshold*0.01)
local_threshold = abs_diffs[threshold_index]
# abs_diffs = np.sort(np.abs(self.diff_train))
# threshold_index = int(len(abs_diffs)*self.threshold*0.01)
# local_threshold = abs_diffs[threshold_index]
#### prediction stage
y_diff_pred = Regression.predict(self.X_test.reshape(1, -1))[-1] # Only one predict in the result
if np.abs(y_diff_pred) < local_threshold:
y_pred = 0
elif y_diff_pred > 0.0:
y_pred = 1
elif y_diff_pred < 0.0:
y_pred = -1
else:
y_pred = 0
# print 'Last point:%s close: %6.1f Prediction for next point: %2d' % (self.X_test.name, self.Close_test, y_pred)
y_pred_array[i_cross_predict] = y_pred
y_targets_array[i_cross_predict] = y_target
diff_targets_array[i_cross_predict] = diff_target
#### describe
accuracy_list, sigsum, real_sigsum, adjusted_sigsum, trade_count, sig_per_trade = self.resultsDescribe(y_pred_array, y_targets_array, diff_targets_array)
last_accuracy_list = np.append(last_accuracy_list, accuracy_list[-1])
last_sigsum_list = np.append(last_sigsum_list, sigsum[-1])
last_adjusted_sigsum_list = np.append(last_adjusted_sigsum_list, adjusted_sigsum[-1])
last_trade_count_list = np.append(last_trade_count_list, trade_count[-1])
last_sig_per_trade_list = np.append(last_sig_per_trade_list, sig_per_trade[-1])
#### calculate average
last_accuracy = np.mean(last_accuracy_list)
last_sigsum = np.mean(last_sigsum_list)
last_adjusted_sigsum = np.mean(last_adjusted_sigsum_list)
last_trade_count = np.mean(last_trade_count_list)
last_sig_per_trade = np.mean(last_sig_per_trade_list)
return last_accuracy, last_sigsum, last_adjusted_sigsum, last_trade_count, last_sig_per_trade
else:
return None
def daysToIndices(self, i_shift):
assert self.timeshift >= self.resample
date_list = np.sort(list(set(self.data.Date)))
test_dates = date_list[-self.cross_predict_days:]
# print test_dates
# print len(test_dates)
start = self.data[test_dates[0]].ix[0].name
start_index = len(self.data.ix[:start])-1
self.indices = np.arange(start_index-self.cross_predict_reindex+i_shift, len(self.data.index)-self.cross_predict_reindex, self.resample)
def periodsToIndices(self, i_shift):
assert self.timeshift >= self.resample
start_index = len(self.data.index)-self.cross_predict_periods
self.indices = np.arange(start_index-self.cross_predict_reindex+i_shift, len(self.data.index)-self.cross_predict_reindex, self.resample)
def numToIndices(self, i_shift):
assert self.timeshift >= self.resample
start_index = len(self.data.index)-self.cross_predict_num*self.resample
self.indices = np.arange(start_index-self.cross_predict_reindex+i_shift, len(self.data.index)-self.cross_predict_reindex, self.resample)
def resultsDescribe(self, y_pred, y_targets, diff_targets):
#### describe
siglist = np.array(y_pred*diff_targets)
sigsum = np.cumsum(siglist)
# accuracy_list = self.cal_accuracy(siglist)
# max_drawdown, mdd_duration = self.cal_maxDrawDown(sigsum)
# str1 = 'accuracy: %.4f, max_drawdown: %.1f, mdd_duration: %d' % (accuracy_list[-1], max_drawdown, mdd_duration)
# if self.real_time_report:
# print str1
real_siglist, real_sigsum, trade_count = self.real_calculate(y_pred, diff_targets)
accuracy_list = self.cal_accuracy(real_siglist)
max_drawdown, mdd_duration = self.cal_maxDrawDown(real_sigsum)
slide_penalty = 1
adjusted_sigsum = real_sigsum-trade_count*slide_penalty
max_drawdown, mdd_duration = self.cal_maxDrawDown(adjusted_sigsum)
sig_per_trade = adjusted_sigsum*1.0/trade_count
str2 = 'accuracy: %.4f, max_drawdown: %.1f, mdd_duration: %d' % (accuracy_list[-1], max_drawdown, mdd_duration)
str3 = 'trade_count: %d, real_sigsum: %6.1f, adjusted_sigsum: %6.1f' % (trade_count[-1], real_sigsum[-1], adjusted_sigsum[-1])
if self.real_time_report:
print str2
print str3
return accuracy_list, sigsum, real_sigsum, adjusted_sigsum, trade_count, sig_per_trade
@staticmethod
def cal_accuracy(siglist):
predict_bool = np.array(siglist!=0).astype(int)
# correct_list = np.array(predict_bool&(siglist>=0)).astype(int)
correct_list = np.array(siglist>0).astype(int)
accuracy_list = np.cumsum(correct_list).astype(float)/np.cumsum(predict_bool)
# last_accuracy = accuracy_list[-1]
# last_accuracy = float(np.sum(correct_list))/np.sum(predict_bool)
return accuracy_list
@staticmethod
def cal_maxDrawDown(sigsum):
'''
Calculate max drawn down within sigsum.
Use numpy.maximum.accumulate to generate running maximum, then identifies the max drop
Returns max drawdown in float
'''
bottom_index = np.argmax(np.maximum.accumulate(sigsum)-sigsum) # end of the period, the bottom
# peak_index = np.argmax(sigsum[:bottom_index]) # start of period, the peak
# max_drawdown = sigsum[peak_index]-sigsum[bottom_index]
# mdd_duration = np.abs(bottom_index-peak_index)
# return max_drawdown, mdd_duration
if bottom_index == 0:
return 0, 0
else:
peak_index = np.argmax(sigsum[:bottom_index]) # start of period, the peak
max_drawdown = sigsum[peak_index]-sigsum[bottom_index]
mdd_duration = np.abs(bottom_index-peak_index)
return max_drawdown, mdd_duration
# @staticmethod
# def cal_maxDrawDown(sigsum):
# '''
# Return the absolute value of the maximum drawdown of sequence X.
#
# Note
# ----
# If the sequence is strictly increasing, 0 is returned.
# '''
# peak = bottom = sigsum[0]
# peak_index = bottom_index = 0
# max_drawdown = 0
# for i, x in enumerate(sigsum):
# if x > peak:
# peak = x
# peak_index = i
# # drawdown = (peak - x) / peak
# drawdown = peak - x
# if drawdown > max_drawdown:
# max_drawdown = drawdown
# bottom = x
# bottom_index = i
# mdd_duration = bottom_index-peak_index
# return max_drawdown, mdd_duration
@staticmethod
def real_calculate(y_pred, diff_targets):
df = pd.DataFrame()
df['preds'] = y_pred
df['diffs'] = diff_targets
## -------------------------------------------------------------------------------
'''replace 0 with values before'''
df['preds'] = df['preds'].replace(0, np.nan).fillna(method='ffill').fillna(0)
## -------------------------------------------------------------------------------
df['preds_turning'] = df['preds'].diff(1).replace(0, np.nan) # the first point is nan, and replace the unchange points with nan
real_siglist = np.array(df['preds']*df['diffs'])
real_sigsum = np.cumsum(real_siglist) # calculate real_sigsum
trade_count = np.zeros(len(df['preds_turning']))
for i in range(len(df['preds_turning'])):
trade_count[i] = len(df['preds_turning'][:i+1].dropna())+1
return real_siglist, real_sigsum, trade_count
@staticmethod
def pp(pic_path, accuracy_list, sigsum, real_sigsum, adjusted_sigsum):
plt.figure()
plt.subplot(211)
plt.plot(accuracy_list, label='$accuracy$')
plt.legend()
plt.ylabel('accuracy')
# plt.figtext(0.39, 0.95, 'accuracy:{:.4f}'.format(accuracy_list[-1]), color='green')
# plt.figtext(0.13, 0.91, 'sigsum:{:6.1f}'.format(sigsum[-1]), color='green')
# plt.figtext(0.39, 0.91, 'real_sigsum:{:6.1f}'.format(real_sigsum[-1]), color='green')
# plt.figtext(0.65, 0.91, 'adjusted_sigsum:{:6.1f}'.format(adjusted_sigsum[-1]), color='green')
plt.title('accuracy:{:.4f}, sigsum:{:6.1f}, real_sigsum:{:6.1f}, adjusted_sigsum:{:6.1f}'.format(
accuracy_list[-1], sigsum[-1], real_sigsum[-1], adjusted_sigsum[-1]))
plt.subplot(212)
plt.plot(sigsum, 'r-', label='$sigsum$')
plt.plot(real_sigsum, 'g-', label='$realsigsum$')
plt.plot(adjusted_sigsum, 'b-', label='$adjustedsigsum$')
plt.legend()
plt.ylabel('sigsum')
plt.savefig(pic_path)
plt.close()
plt.figure()
plt.plot(adjusted_sigsum, 'b-', label='$adjustedsigsum$')
plt.legend()
plt.ylabel('adjusted_sigsum')
# plt.figtext(0.39, 0.95, 'adjusted_sigsum:{:6.1f}'.format(adjusted_sigsum[-1]), color='green')
plt.title('adjusted_sigsum:{:6.1f}'.format(adjusted_sigsum[-1]))
plt.savefig(os.path.splitext(pic_path)[0]+'_'+os.path.splitext(pic_path)[1])
plt.close()
##########################################################################################
def para_optunity(aa):
def my_object(maxlag, windowsize, threshold):
aa.maxlag = int(maxlag)
aa.windowsize = int(windowsize)
aa.threshold = threshold
aa.selectFeatures()
last_accuracy, last_sigsum, last_adjusted_sigsum, last_trade_count, last_sig_per_trade = aa.run(mode='test')
'''you can change target here'''
if aa.target == 'accuracy':
target = last_accuracy
elif aa.target == 'sigsum':
target = last_sigsum
elif aa.target == 'sig_per_trade':
target = last_sig_per_trade
elif aa.target == 'adjusted_sigsum':
target = last_adjusted_sigsum
else:
target = last_sigsum # default
return target
def my_object_algo(algorithm, maxlag, windowsize, threshold):
aa.algorithm = algorithm
aa.maxlag = int(maxlag)
aa.windowsize = int(windowsize)
aa.threshold = threshold
aa.selectFeatures()
last_accuracy, last_sigsum, last_adjusted_sigsum, last_trade_count, last_sig_per_trade = aa.run(mode='test')
'''you can change target here'''
if aa.target == 'accuracy':
target = last_accuracy
elif aa.target == 'sigsum':
target = last_sigsum
elif aa.target == 'sig_per_trade':
target = last_sig_per_trade
elif aa.target == 'adjusted_sigsum':
target = last_adjusted_sigsum
else:
target = last_sigsum # default
return target
##########################################################################################
'''
PSO
http://optunity.readthedocs.io/en/latest/_modules/optunity/solvers/ParticleSwarm.html#ParticleSwarm
d = dict(kwargs)
if num_evals > 1000:
d['num_particles'] = 100
elif num_evals >= 200:
d['num_particles'] = 20
elif num_evals >= 10:
d['num_particles'] = 10
else:
d['num_particles'] = num_evals
d['num_generations'] = int(math.ceil(float(num_evals) / d['num_particles']))
return d
'''
maxlag = [10, 50]
windowsize = [1000, 10000]
threshold = [70, 90]
search = {
'algorithm':{'ridgecv':None},
# 'algorithm':{'ridgecv':None,'elasticnetcv':None,'knnreg':None,'linearsvr':None},
'maxlag':maxlag,
'windowsize':windowsize,
'threshold':threshold,
}
num_evals = 100
##################################################################################
#### number_of_processes must equal to num_particles!!!
if num_evals > 1000:
number_of_processes = 100
elif num_evals >= 500:
number_of_processes = 50
elif num_evals >= 300:
number_of_processes = 30
elif num_evals >= 100:
number_of_processes = 20
elif num_evals >= 30:
number_of_processes = 10
elif num_evals >= 10:
number_of_processes = 5
else:
number_of_processes = num_evals
## -------------------------------------------------------------------------------
#### ParticleSwarm_New
from optunity.solvers.ParticleSwarm_New import ParticleSwarm_New
best_params, info, _ = optunity.maximize(
# best_params, info, _ = optunity.minimize(
my_object,
solver_name = 'particle swarm new', # default:'particle swarm'
# solver_name = 'grid search', # default:'particle swarm'
num_evals = num_evals,
maxlag = maxlag,
windowsize = windowsize,
threshold = threshold,
# pmap = optunity.pmap, # Parallel map using multiprocessing
# pmap = pmap,
pmap = create_pmap(number_of_processes),
)
# print info.optimum
## -------------------------------------------------------------------------------
# #### ParticleSwarm
# best_params, info, _ = optunity.maximize(
# # best_params, info, _ = optunity.minimize(
# my_object,
# solver_name = 'particle swarm', # default:'particle swarm'
# # solver_name = 'grid search', # default:'particle swarm'
# num_evals = num_evals,
# maxlag = maxlag,
# windowsize = windowsize,
# threshold = threshold,
# # pmap = optunity.pmap, # Parallel map using multiprocessing
# # pmap = pmap,
# pmap = create_pmap(number_of_processes),
# )
# # print info.optimum
## -------------------------------------------------------------------------------
# #### ParticleSwarm
# best_params, info, _ = optunity.maximize_structured( # default:'particle swarm'
# # best_params, info, _ = optunity.minimize_structured( # default:'particle swarm'
# my_object_algo,
# search_space=search,
# num_evals = num_evals,
# # pmap = optunity.pmap, # Parallel map using multiprocessing
# # pmap = pmap,
# pmap = create_pmap(number_of_processes),
# )
# # print info.optimum
##################################################################################
df = optunity.call_log2dataframe(info.call_log)
df.sort_values('value', ascending=False, inplace=True)
return best_params, info.optimum, df
def _fun(f, q_in, q_out):
while True:
i, x = q_in.get()
if i is None:
break
value = f(*x)
if hasattr(f, 'call_log'):
k = list(f.call_log.keys())[-1]
q_out.put((i, value, k))
else:
q_out.put((i, value))
# http://stackoverflow.com/a/16071616
def pmap(f, *args, **kwargs):
"""Parallel map using multiprocessing.
:param f: the callable
:param args: arguments to f, as iterables
:returns: a list containing the results
.. warning::
This function will not work in IPython: https://github.com/claesenm/optunity/issues/8.
.. warning::
Python's multiprocessing library is incompatible with Jython.
"""
nprocs = kwargs.get('number_of_processes', multiprocessing.cpu_count())
# nprocs = multiprocessing.cpu_count()
q_in = multiprocessing.Queue(1) # q_in = multiprocessing.Queue()
q_out = multiprocessing.Queue()
proc = [multiprocessing.Process(target=_fun, args=(f, q_in, q_out))
for _ in range(nprocs)]
for p in proc:
p.daemon = True
'''
Some threads do background tasks,
like sending keepalive packets,
or performing periodic garbage collection,
or whatever.
These are only useful when the main program is running,
and it's okay to kill them off once the other, non-daemon, threads have exited.
Without daemon threads, you'd have to keep track of them,
and tell them to exit, before your program can completely quit.
By setting them as daemon threads, you can let them run and forget about them,
and when your program quits, any daemon threads are killed automatically.
'''
p.start()
sent = [q_in.put((i, x)) for i, x in enumerate(zip(*args))]
##########################################################################################
## best way
# [q_in.put((None, None)) for _ in range(nprocs)]
# res = [q_out.get() for _ in range(len(sent))]
## ---------------------------------------------------------------------------------------
## best way
res = [q_out.get() for _ in range(len(sent))]
[q_in.put((None, None)) for _ in range(nprocs)]
##########################################################################################
# for p in proc:
# p.terminate()
##########################################################################################
for p in proc:
p.join()
# FIXME: strong coupling between pmap and functions.logged
if hasattr(f, 'call_log'):
for _, value, k in sorted(res):
f.call_log[k] = value
return [x for i, x, _ in sorted(res)]
else:
return [x for i, x in sorted(res)]
def create_pmap(number_of_processes):
def pmap_bound(f, *args):
return pmap(f, *args, number_of_processes=number_of_processes)
return pmap_bound
##########################################################################################
if __name__ == '__main__':
start_time = datetime.datetime.now()
##########################################################################################
# file_path = './data/rb-cu/rb09_16.csv'
# a = predict(file_path=file_path)
# # a = predict(file_path='rb1610_tick.csv')
# # a = predict(file_path='/opt/share/rb1610_tick.csv')
# # a = predict(file_path='./data/rb1610_tick.csv')
# a.real_time_report = True
#
# ## ---------------------------------------------------------------------------------------
# a.skip_rows = 30000
# a.dataProcess(load_data=True)
#
# a.timeshift = 1
# # a.resample = a.timeshift
# a.resample = 1
# a.targetDefine()
#
# # a.cross_predict_days = 1
# a.cross_predict_periods = 8*60
# # a.cross_predict_num = 8*60
#
# a.algorithm = 'ridgecv'
# a.maxlag = 17 ## <=100
# a.windowsize = 2000
# a.threshold = 30
#
# a.selectFeatures()
# last_accuracy, last_sigsum, last_adjusted_sigsum, last_trade_count, last_sig_per_trade = a.run(mode='forward')
# print 'accuracy: %.4f, trade_count: %d, sigsum: %6.1f, adjusted_sigsum: %6.1f' % \
# (last_accuracy, last_trade_count, last_sigsum, last_adjusted_sigsum)
#
# accuracy_list, sigsum, real_sigsum, adjusted_sigsum, trade_count, sig_per_trade = a.resultsDescribe(a.y_pred, a.y_targets, a.diff_targets)
# results_path = 'results'
# if os.path.exists(results_path):
# shutil.rmtree(results_path)
# if not os.path.exists(results_path):
# os.makedirs(results_path)
# with open(os.path.join(results_path, 'results.pkl'), 'wb') as fp:
# pickle.dump((accuracy_list, sigsum, real_sigsum, adjusted_sigsum), fp)
# print 'accuracy: %.4f, trade_count: %d, sigsum: %6.1f, real_sigsum: %6.1f, adjusted_sigsum: %6.1f' % \
# (accuracy_list[-1], trade_count[-1], sigsum[-1], real_sigsum[-1], adjusted_sigsum[-1])
# a.pp(os.path.join(results_path, 'accuracy_sigsum_tradecount%d.png' % trade_count[-1]), accuracy_list, sigsum, real_sigsum, adjusted_sigsum)
##########################################################################################
file_path = './data/rb-cu/rb09_16.csv'
## ---------------------------------------------------------------------------------------
#### calculate data size according to date
temp = predict(file_path=file_path)
# temp = predict(file_path='rb1610_tick.csv')
# temp = predict(file_path='/opt/share/rb1610_tick.csv')
# temp = predict(file_path='./data/rb1610_tick.csv')
temp.real_time_report = False
temp.skip_rows = 2000000
temp.nrows = 2000000
temp.dataProcess(load_data=True)
print temp.data.groupby(temp.data.Date).size() # describe data size order by Date
print temp.data.groupby(temp.data.Date).size()['2016-04-01':'2016-04-15']
size1 = np.sum(temp.data.groupby(temp.data.Date).size()['2015-01-01':])
size2 = np.sum(temp.data.groupby(temp.data.Date).size()['2016-01-01':])
# size2 = 0
print size1, size2
del temp
gc.collect()
####
# size1 = 8*60
# size2 = 0
## ---------------------------------------------------------------------------------------
resample_num_list = [1]
# resample_num_list = [1, 2, 4, 8]
# resample_num_list = [1, 2, 3, 4, 5, 6, 7, 8]
timeshift_num_list = [1]
# timeshift_num_list = [1, 2, 4, 8, 16]
# timeshift_num_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20]
# results_dir = './'
results_dir = './results_rb_dir/'
default_nrows = 30000
for resample_num in resample_num_list:
'''you can change the condition here: whether timeshift equals resample or not'''
# timeshift_num_list = [resample_num] ## timeshift == resample
timeshift_num_list = filter(lambda x: x>=resample_num, timeshift_num_list) ## timeshift >= resample
for timeshift_num in timeshift_num_list:
## ---------------------------------------------------------------------------------------
#### calculate the first best parameter sets
temp = predict(file_path=file_path)
# temp = predict(file_path='rb1610_tick.csv')
# temp = predict(file_path='/opt/share/rb1610_tick.csv')
# temp = predict(file_path='./data/rb1610_tick.csv')
temp.real_time_report = False
num = 8*60
temp.skip_rows = default_nrows+size1
temp.dataProcess(load_data=True)
temp.timeshift = timeshift_num
# temp.resample = temp.timeshift
temp.resample = resample_num
temp.targetDefine()
# temp.cross_predict_days = 1
temp.cross_predict_periods = num
# temp.cross_predict_num = num
best_params, optimum, df_sort = para_optunity(temp)
print 'best parameters:', best_params
print 'best score:', optimum
print 'sorted best parameters:'
print df_sort
del temp
gc.collect()
# save_path = './best_parameters'
# with open(save_path, 'wb') as fp:
# pickle.dump((best_params, optimum, df_sort), fp)
####
# save_path = './best_parameters'
# with open(save_path, 'rb') as fp:
# best_params, optimum, df_sort = pickle.load(fp)
# best_params = {
# 'algorithm':'ridgecv',
# 'maxlag':40, ## <=100
# 'windowsize':300000,
# 'threshold':30
# }
## ---------------------------------------------------------------------------------------
#### Dynamic parameter optimization
dynamic = False
a = predict(file_path=file_path)
# a = predict(file_path='rb1610_tick.csv')
# a = predict(file_path='/opt/share/rb1610_tick.csv')
# a = predict(file_path='./data/rb1610_tick.csv')
a.real_time_report = True
num = 8*60
data_file = './Data.h5'
features_file = './Feature.h5'