-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy patheval_vcmr.py
578 lines (530 loc) · 24.3 KB
/
eval_vcmr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
run evaluation of VCMR or infenrece of TVR for submission
"""
import argparse
import os
from os.path import exists
from time import time
import torch
from torch.utils.data import DataLoader
from torch.nn import functional as F
import numpy as np
from tqdm import tqdm
import pprint
from apex import amp
from horovod import torch as hvd
from data import (VcmrFullEvalDataset, vcmr_full_eval_collate,
VcmrVideoOnlyFullEvalDataset,
PrefetchLoader, QueryTokLmdb,
video_collate)
from load_data import (
get_video_ids, load_video_sub_dataset,
load_video_only_dataset)
from data.loader import move_to_cuda
from model.vcmr import HeroForVcmr
from utils.logger import LOGGER
from utils.const import VFEAT_DIM, VCMR_IOU_THDS
from utils.tvr_standalone_eval import eval_retrieval
from utils.distributed import all_gather_list
from utils.misc import Struct
from utils.basic_utils import (
load_json, save_json)
from utils.tvr_eval_utils import (
find_max_triples_from_upper_triangle_product,
generate_min_max_length_mask,
get_submission_top_n, post_processing_vcmr_nms,
post_processing_svmr_nms)
def main(opts):
hvd.init()
n_gpu = hvd.size()
device = torch.device("cuda", hvd.local_rank())
torch.cuda.set_device(hvd.local_rank())
rank = hvd.rank()
LOGGER.info("device: {} n_gpu: {}, rank: {}, "
"16-bits training: {}".format(
device, n_gpu, hvd.rank(), opts.fp16))
if hvd.rank() != 0:
LOGGER.disabled = True
hps_file = f'{opts.output_dir}/log/hps.json'
model_opts = Struct(load_json(hps_file))
model_config = f'{opts.output_dir}/log/model_config.json'
# load DBs and image dirs
video_ids = get_video_ids(opts.query_txt_db)
if opts.task != "didemo_video_only":
video_db = load_video_sub_dataset(
opts.vfeat_db, opts.sub_txt_db, model_opts.vfeat_interval,
model_opts)
else:
txt_meta = load_json(
os.path.join(opts.query_txt_db, "meta.json"))
video_db = load_video_only_dataset(
opts.vfeat_db, txt_meta,
model_opts.vfeat_interval,
model_opts)
assert opts.split in opts.query_txt_db
q_txt_db = QueryTokLmdb(opts.query_txt_db, -1)
if opts.task != "didemo_video_only":
inf_dataset = VcmrFullEvalDataset
else:
inf_dataset = VcmrVideoOnlyFullEvalDataset
eval_dataset = inf_dataset(
video_ids, video_db, q_txt_db,
distributed=model_opts.distributed_eval)
# Prepare model
if exists(opts.checkpoint):
ckpt_file = opts.checkpoint
else:
ckpt_file = f'{opts.output_dir}/ckpt/model_step_{opts.checkpoint}.pt'
checkpoint = torch.load(ckpt_file)
img_pos_embed_weight_key = (
"v_encoder.f_encoder.img_embeddings" +
".position_embeddings.weight")
assert img_pos_embed_weight_key in checkpoint
max_frm_seq_len = len(checkpoint[img_pos_embed_weight_key])
model = HeroForVcmr.from_pretrained(
model_config,
state_dict=checkpoint,
vfeat_dim=VFEAT_DIM,
max_frm_seq_len=max_frm_seq_len,
lw_neg_ctx=model_opts.lw_neg_ctx,
lw_neg_q=model_opts.lw_neg_q, lw_st_ed=0,
ranking_loss_type=model_opts.ranking_loss_type,
use_hard_negative=False,
hard_pool_size=model_opts.hard_pool_size,
margin=model_opts.margin,
use_all_neg=model_opts.use_all_neg,
drop_svmr_prob=model_opts.drop_svmr_prob)
model.to(device)
if opts.fp16:
model = amp.initialize(model, enabled=opts.fp16, opt_level='O2')
eval_dataloader = DataLoader(eval_dataset, batch_size=opts.batch_size,
num_workers=opts.n_workers,
pin_memory=opts.pin_mem,
collate_fn=vcmr_full_eval_collate)
eval_dataloader = PrefetchLoader(eval_dataloader)
_, results = validate_full_vcmr(
model, eval_dataloader, opts.split, opts, model_opts)
result_dir = f'{opts.output_dir}/results_{opts.split}'
if not exists(result_dir) and rank == 0:
os.makedirs(result_dir)
all_results_list = all_gather_list(results)
if hvd.rank() == 0:
all_results = {"video2idx": all_results_list[0]["video2idx"]}
for rank_id in range(hvd.size()):
for key, val in all_results_list[rank_id].items():
if key == "video2idx":
continue
if key not in all_results:
all_results[key] = []
all_results[key].extend(all_results_list[rank_id][key])
LOGGER.info('All results joined......')
save_json(
all_results,
f'{result_dir}/results_{opts.checkpoint}_all.json')
LOGGER.info('All results written......')
@torch.no_grad()
def validate_full_vcmr(model, val_loader, split, opts, model_opts):
LOGGER.info("start running full VCMR evaluation"
f"on {opts.task} {split} split...")
model.eval()
n_ex = 0
st = time()
val_log = {}
has_gt_target = True
val_vid2idx = val_loader.dataset.vid2idx
if split in val_vid2idx:
video2idx_global = val_vid2idx[split]
else:
video2idx_global = val_vid2idx
video_ids = sorted(list(video2idx_global.keys()))
video2idx_local = {e: i for i, e in enumerate(video_ids)}
query_data = val_loader.dataset.query_data
partial_query_data = []
total_frame_embeddings = None
video_batch, video_idx = [], []
max_clip_len = 0
for video_i, (vid, vidx) in tqdm(enumerate(video2idx_local.items()),
desc="Computing Video Embeddings",
total=len(video2idx_local)):
video_item = val_loader.dataset.video_db[vid]
video_batch.append(video_item)
video_idx.append(vidx)
if len(video_batch) == opts.vcmr_eval_video_batch_size or\
video_i == len(video2idx_local) - 1:
video_batch = move_to_cuda(video_collate(video_batch))
# Safeguard fp16
for k, item in video_batch.items():
if isinstance(item, torch.Tensor) and\
item.dtype == torch.float32:
video_batch[k] = video_batch[k].to(
dtype=next(model.parameters()).dtype)
curr_frame_embeddings = model.v_encoder(video_batch, 'repr')
curr_c_attn_masks = video_batch['c_attn_masks']
curr_clip_len = curr_frame_embeddings.size(-2)
assert curr_clip_len <= model_opts.max_clip_len
if total_frame_embeddings is None:
feat_dim = curr_frame_embeddings.size(-1)
total_frame_embeddings = torch.zeros(
(len(video2idx_local), model_opts.max_clip_len, feat_dim),
dtype=curr_frame_embeddings.dtype,
device=curr_frame_embeddings.device)
total_c_attn_masks = torch.zeros(
(len(video2idx_local), model_opts.max_clip_len),
dtype=curr_c_attn_masks.dtype,
device=curr_frame_embeddings.device)
indices = torch.LongTensor(video_idx)
total_frame_embeddings[indices, :curr_clip_len] =\
curr_frame_embeddings
total_c_attn_masks[indices, :curr_clip_len] =\
curr_c_attn_masks
max_clip_len = max(max_clip_len, curr_clip_len)
video_batch, video_idx = [], []
total_frame_embeddings = total_frame_embeddings[:, :max_clip_len, :]
total_c_attn_masks = total_c_attn_masks[:, :max_clip_len]
svmr_st_probs_total, svmr_ed_probs_total = None, None
sorted_q2c_indices, sorted_q2c_scores = None, None
flat_st_ed_sorted_scores, flat_st_ed_scores_sorted_indices = None, None
total_qids, total_vids = [], []
for batch in tqdm(val_loader, desc="Computing q2vScores"):
qids = batch['qids']
vids = batch['vids']
targets = batch['targets']
if has_gt_target and targets.min() < 0:
has_gt_target = False
LOGGER.info(
"No GT annotations provided, only generate predictions")
del batch['targets']
del batch['qids']
del batch['vids']
total_qids.extend(qids)
total_vids.extend(vids)
for qid in qids:
partial_query_data.append(query_data[qid])
# Safeguard fp16
for k, item in batch.items():
if isinstance(item, torch.Tensor) and item.dtype == torch.float32:
batch[k] = batch[k].to(
dtype=next(model.parameters()).dtype)
# FIXME
_q2video_scores, _st_probs, _ed_probs =\
model.get_pred_from_raw_query(
total_frame_embeddings, total_c_attn_masks, **batch,
cross=True, val_gather_gpus=False)
_st_probs = F.softmax(_st_probs, dim=-1)
_ed_probs = F.softmax(_ed_probs, dim=-1)
n_ex += len(qids)
if "SVMR" in opts.full_eval_tasks and has_gt_target:
row_indices = torch.arange(0, len(_st_probs))
svmr_gt_vidx = torch.LongTensor(
[video2idx_local[e] for e in vids])
svmr_st_probs = _st_probs[
row_indices, svmr_gt_vidx].float().cpu().numpy()
svmr_ed_probs = _ed_probs[
row_indices, svmr_gt_vidx].float().cpu().numpy()
if svmr_st_probs_total is None:
svmr_st_probs_total = svmr_st_probs
svmr_ed_probs_total = svmr_ed_probs
else:
svmr_st_probs_total = np.concatenate(
(svmr_st_probs_total, svmr_st_probs),
axis=0)
svmr_ed_probs_total = np.concatenate(
(svmr_ed_probs_total, svmr_ed_probs),
axis=0)
if "VR" not in opts.full_eval_tasks or _q2video_scores is None:
continue
_q2video_scores = _q2video_scores.float()
# To give more importance to top scores,
# the higher opt.alpha is the more importance will be given
q2video_scores = torch.exp(model_opts.q2c_alpha * _q2video_scores)
_sorted_q2c_scores, _sorted_q2c_indices = \
torch.topk(q2video_scores, model_opts.max_vcmr_video,
dim=1, largest=True)
if sorted_q2c_indices is None:
sorted_q2c_indices = _sorted_q2c_indices.cpu().numpy()
sorted_q2c_scores = _sorted_q2c_scores.cpu().numpy()
else:
sorted_q2c_indices = np.concatenate(
(sorted_q2c_indices, _sorted_q2c_indices.cpu().numpy()),
axis=0)
sorted_q2c_scores = np.concatenate(
(sorted_q2c_scores, _sorted_q2c_scores.cpu().numpy()),
axis=0)
if "VCMR" not in opts.full_eval_tasks:
continue
row_indices = torch.arange(
0, len(_st_probs), device=_st_probs.device).unsqueeze(1)
_st_probs = _st_probs[
row_indices, _sorted_q2c_indices] # (_N_q, max_vcmr_video, L)
_ed_probs = _ed_probs[row_indices, _sorted_q2c_indices]
# (_N_q, max_vcmr_video, L, L)
_st_ed_scores = torch.einsum("qvm,qv,qvn->qvmn", _st_probs,
_sorted_q2c_scores, _ed_probs)
valid_prob_mask = generate_min_max_length_mask(
_st_ed_scores.shape, min_l=model_opts.min_pred_l,
max_l=model_opts.max_pred_l)
_st_ed_scores *= torch.from_numpy(
valid_prob_mask).to(
_st_ed_scores.device) # invalid location will become zero!
# sort across the top-max_n_videos videos (by flatten from the 2nd dim)
# the indices here are local indices, not global indices
_n_q = _st_ed_scores.shape[0]
_flat_st_ed_scores = _st_ed_scores.reshape(
_n_q, -1) # (N_q, max_vcmr_video*L*L)
_flat_st_ed_sorted_scores, _flat_st_ed_scores_sorted_indices = \
torch.sort(_flat_st_ed_scores, dim=1, descending=True)
if flat_st_ed_sorted_scores is None:
flat_st_ed_scores_sorted_indices =\
_flat_st_ed_scores_sorted_indices[
:, :model_opts.max_before_nms].cpu().numpy()
flat_st_ed_sorted_scores =\
_flat_st_ed_sorted_scores[
:, :model_opts.max_before_nms].cpu().numpy()
else:
flat_st_ed_scores_sorted_indices = np.concatenate(
(flat_st_ed_scores_sorted_indices,
_flat_st_ed_scores_sorted_indices[
:, :model_opts.max_before_nms].cpu().numpy()),
axis=0)
flat_st_ed_sorted_scores = np.concatenate(
(flat_st_ed_sorted_scores,
_flat_st_ed_sorted_scores[
:, :model_opts.max_before_nms].cpu().numpy()),
axis=0)
svmr_res, vr_res, vcmr_res = [], [], []
if "SVMR" in opts.full_eval_tasks and has_gt_target:
st_ed_prob_product = np.einsum(
"bm,bn->bmn", svmr_st_probs_total,
svmr_ed_probs_total) # (N, L, L)
valid_prob_mask = generate_min_max_length_mask(
st_ed_prob_product.shape, min_l=model_opts.min_pred_l,
max_l=model_opts.max_pred_l)
# invalid location will become zero!
st_ed_prob_product *= valid_prob_mask
batched_sorted_triples =\
find_max_triples_from_upper_triangle_product(
st_ed_prob_product, top_n=model_opts.max_before_nms,
prob_thd=None)
for svmr_i, (qid, vid) in tqdm(
enumerate(zip(total_qids, total_vids)),
desc="[SVMR] Loop over queries to generate predictions",
total=len(total_qids)):
vidx = video2idx_global[vid]
_sorted_triples = batched_sorted_triples[svmr_i]
# as we redefined ed_idx, which is inside the moment.
_sorted_triples[:, 1] += 1
_sorted_triples[:, :2] = (_sorted_triples[:, :2]
* model_opts.vfeat_interval)
cur_ranked_predictions = [
[vidx, ] + row for row in _sorted_triples.tolist()]
cur_query_pred = dict(desc_id=int(qid),
desc="",
predictions=cur_ranked_predictions)
svmr_res.append(cur_query_pred)
if "VR" in opts.full_eval_tasks:
for vr_i, (_sorted_q2c_scores_row, _sorted_q2c_indices_row) in tqdm(
enumerate(
zip(sorted_q2c_scores[:, :100],
sorted_q2c_indices[:, :100])),
desc="[VR] Loop over queries to generate predictions",
total=len(total_qids)):
cur_vr_redictions = []
for v_score, v_meta_idx in zip(_sorted_q2c_scores_row,
_sorted_q2c_indices_row):
video_idx = video2idx_global[video_ids[v_meta_idx]]
cur_vr_redictions.append([video_idx, 0, 0, float(v_score)])
cur_query_pred = dict(desc_id=int(total_qids[vr_i]),
desc="",
predictions=cur_vr_redictions)
vr_res.append(cur_query_pred)
if "VCMR" in opts.full_eval_tasks:
for vcmr_i, (
_flat_st_ed_scores_sorted_indices,
_flat_st_ed_sorted_scores) in tqdm(
enumerate(zip(
flat_st_ed_scores_sorted_indices,
flat_st_ed_sorted_scores)),
desc="[VCMR] Loop over queries to generate predictions",
total=len(total_qids)): # i is query_idx
# list([video_idx(int), st(float),
# ed(float), score(float)])
video_meta_indices_local, pred_st_indices, pred_ed_indices = \
np.unravel_index(
_flat_st_ed_scores_sorted_indices,
shape=(model_opts.max_vcmr_video, model_opts.max_clip_len,
model_opts.max_clip_len))
# video_meta_indices_local refers to
# the indices among the top-max_vcmr_video
# video_meta_indices refers to
# the indices in all the videos,
# which is the True indices
video_meta_indices = sorted_q2c_indices[
vcmr_i, video_meta_indices_local]
pred_st_in_seconds = pred_st_indices.astype(
np.float32) * model_opts.vfeat_interval
pred_ed_in_seconds = pred_ed_indices.astype(
np.float32
) * model_opts.vfeat_interval + model_opts.vfeat_interval
cur_vcmr_redictions = []
for j, (v_meta_idx, v_score) in enumerate(
zip(video_meta_indices,
_flat_st_ed_sorted_scores)): # videos
video_idx = video2idx_global[video_ids[v_meta_idx.item()]]
cur_vcmr_redictions.append(
[video_idx, float(pred_st_in_seconds[j]),
float(pred_ed_in_seconds[j]), float(v_score)])
cur_query_pred = dict(
desc_id=int(total_qids[vcmr_i]),
desc="",
predictions=cur_vcmr_redictions)
vcmr_res.append(cur_query_pred)
eval_res = dict(SVMR=svmr_res, VCMR=vcmr_res, VR=vr_res)
eval_res = {k: v for k, v in eval_res.items() if len(v) != 0}
eval_res["video2idx"] = video2idx_global
eval_submission = get_submission_top_n(
eval_res, top_n=model_opts.max_after_nms)
if has_gt_target:
metrics = eval_retrieval(eval_submission, partial_query_data,
iou_thds=VCMR_IOU_THDS,
match_number=True,
verbose=False,
use_desc_type=model_opts.eval_with_query_type)
if model_opts.distributed_eval:
n_ex_per_rank = all_gather_list(n_ex)
metrics_per_rank = all_gather_list(metrics)
else:
n_ex_per_rank = [n_ex]
metrics_per_rank = [metrics]
n_ex = sum(n_ex_per_rank)
val_log = {}
gathered_metrics = {}
for task_type, task_metric in metrics.items():
gathered_metrics[task_type] = {}
for k in task_metric.keys():
if k == "desc_type_ratio":
continue
gathered_v = 0
for idx, n in enumerate(n_ex_per_rank):
gathered_v += n*metrics_per_rank[idx][task_type][k]
gathered_v = gathered_v / n_ex
gathered_metrics[task_type][k] = gathered_v
val_log[
f'valid_{split}_{task_type}/{task_type}_{k}'] = gathered_v
if "VCMR" in gathered_metrics:
LOGGER.info("metrics_no_nms_VCMR \n{}".format(pprint.pformat(
gathered_metrics["VCMR"], indent=4)))
elif "SVMR" in gathered_metrics:
LOGGER.info("metrics_no_nms_SVMR \n{}".format(pprint.pformat(
gathered_metrics["SVMR"], indent=4)))
if model_opts.nms_thd != -1:
LOGGER.info(
"Performing nms with nms_thd {}".format(
model_opts.nms_thd))
eval_res_after_nms = dict(
video2idx=eval_res["video2idx"])
if "SVMR" in eval_res:
eval_res_after_nms["SVMR"] =\
post_processing_svmr_nms(
eval_res["SVMR"], nms_thd=model_opts.nms_thd,
max_before_nms=model_opts.max_before_nms,
max_after_nms=model_opts.max_after_nms)
if "VCMR" in eval_res:
eval_res_after_nms["VCMR"] =\
post_processing_vcmr_nms(
eval_res["VCMR"], nms_thd=model_opts.nms_thd,
max_before_nms=model_opts.max_before_nms,
max_after_nms=model_opts.max_after_nms)
metrics_nms = eval_retrieval(
eval_res_after_nms, partial_query_data,
iou_thds=VCMR_IOU_THDS,
match_number=True,
verbose=False,
use_desc_type=model_opts.eval_with_query_type)
if model_opts.distributed_eval:
metrics_nms_per_rank = all_gather_list(metrics_nms)
else:
metrics_nms_per_rank = [metrics_nms]
gathered_metrics_nms = {}
for task_type, task_metric in metrics_nms.items():
gathered_metrics_nms[task_type] = {}
for k in task_metric.keys():
if k == "desc_type_ratio":
continue
gathered_v_nms = 0
for idx, n in enumerate(n_ex_per_rank):
gathered_v_nms += (
n*metrics_nms_per_rank[idx][task_type][k])
gathered_v_nms = gathered_v_nms / n_ex
gathered_metrics_nms[task_type][k] = gathered_v_nms
val_log[f'valid_{split}_{task_type}'
f'_nms_{model_opts.nms_thd}/'
f'{task_type}_{k}'] = gathered_v_nms
if "VCMR" in gathered_metrics_nms:
LOGGER.info("metrics_nms_VCMR \n{}".format(pprint.pformat(
gathered_metrics_nms["VCMR"], indent=4)))
elif "SVMR" in gathered_metrics_nms:
LOGGER.info("metrics_nms_SVMR \n{}".format(pprint.pformat(
gathered_metrics_nms["SVMR"], indent=4)))
tot_time = time()-st
val_log.update(
{f'valid/vcmr_{split}_ex_per_s': n_ex/tot_time})
LOGGER.info(f"validation finished in {int(tot_time)} seconds")
model.train()
return val_log, eval_submission
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--sub_txt_db",
default="/txt/tv_subtitles.db",
type=str,
help="The input video subtitle corpus. (LMDB)")
parser.add_argument("--vfeat_db",
default="/video/tv", type=str,
help="The input video frame features.")
parser.add_argument("--query_txt_db",
default="/txt/tvr_val.db",
type=str,
help="The input test query corpus. (LMDB)")
parser.add_argument("--split", choices=["val", "test_public", "test"],
default="val", type=str,
help="The input query split")
parser.add_argument("--task", choices=["tvr", "how2r", "didemo_video_sub",
"didemo_video_only"],
default="tvr", type=str,
help="The evaluation vcmr task")
parser.add_argument("--checkpoint",
default=None, type=str,
help="pretrained model checkpoint steps")
parser.add_argument("--batch_size",
default=80, type=int,
help="number of queries in a batch")
parser.add_argument("--vcmr_eval_video_batch_size",
default=50, type=int,
help="number of videos in a batch")
parser.add_argument(
"--full_eval_tasks", type=str, nargs="+",
choices=["VCMR", "SVMR", "VR"], default=["VCMR", "SVMR", "VR"],
help="Which tasks to run."
"VCMR: Video Corpus Moment Retrieval;"
"SVMR: Single Video Moment Retrieval;"
"VR: regular Video Retrieval. "
" (will be performed automatically with VCMR)")
parser.add_argument(
"--output_dir", default=None, type=str,
help="The output directory where the model checkpoints will be "
"written.")
# device parameters
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead "
"of 32-bit")
parser.add_argument('--n_workers', type=int, default=4,
help="number of data workers")
parser.add_argument('--pin_mem', action='store_true',
help="pin memory")
args = parser.parse_args()
# options safe guard
# TODO
main(args)