-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy patheval_vr.py
360 lines (322 loc) · 13.8 KB
/
eval_vr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
run evaluation of VR
"""
import argparse
import os
from os.path import exists
from time import time
import torch
from torch.utils.data import DataLoader
import numpy as np
from tqdm import tqdm
import pprint
from apex import amp
from horovod import torch as hvd
from data import (VrFullEvalDataset, vr_full_eval_collate,
VrVideoOnlyFullEvalDataset,
PrefetchLoader, MsrvttQueryTokLmdb,
video_collate)
from load_data import (
get_video_ids, load_video_sub_dataset,
load_video_only_dataset)
from data.loader import move_to_cuda
from model.vr import HeroForVr
from utils.logger import LOGGER
from utils.const import VFEAT_DIM, VCMR_IOU_THDS
from utils.tvr_standalone_eval import eval_retrieval
from utils.distributed import all_gather_list
from utils.misc import Struct
from utils.basic_utils import (
load_json, save_json)
from utils.tvr_eval_utils import get_submission_top_n
def main(opts):
hvd.init()
n_gpu = hvd.size()
device = torch.device("cuda", hvd.local_rank())
torch.cuda.set_device(hvd.local_rank())
rank = hvd.rank()
LOGGER.info("device: {} n_gpu: {}, rank: {}, "
"16-bits training: {}".format(
device, n_gpu, hvd.rank(), opts.fp16))
if hvd.rank() != 0:
LOGGER.disabled = True
hps_file = f'{opts.output_dir}/log/hps.json'
model_opts = Struct(load_json(hps_file))
model_config = f'{opts.output_dir}/log/model_config.json'
# load DBs and image dirs
video_ids = get_video_ids(opts.query_txt_db)
if opts.task != "msrvtt_video_only":
video_db = load_video_sub_dataset(
opts.vfeat_db, opts.sub_txt_db, model_opts.vfeat_interval,
model_opts)
else:
txt_meta = load_json(
os.path.join(opts.query_txt_db, "meta.json"))
video_db = load_video_only_dataset(
opts.vfeat_db, txt_meta,
model_opts.vfeat_interval,
model_opts)
assert opts.split in opts.query_txt_db
q_txt_db = MsrvttQueryTokLmdb(opts.query_txt_db, -1)
if opts.task != "msrvtt_video_only":
inf_dataset = VrFullEvalDataset
else:
inf_dataset = VrVideoOnlyFullEvalDataset
eval_dataset = inf_dataset(
video_ids, video_db, q_txt_db,
distributed=model_opts.distributed_eval)
# Prepare model
if exists(opts.checkpoint):
ckpt_file = opts.checkpoint
else:
ckpt_file = f'{opts.output_dir}/ckpt/model_step_{opts.checkpoint}.pt'
checkpoint = torch.load(ckpt_file)
img_pos_embed_weight_key = (
"v_encoder.f_encoder.img_embeddings" +
".position_embeddings.weight")
assert img_pos_embed_weight_key in checkpoint
max_frm_seq_len = len(checkpoint[img_pos_embed_weight_key])
model = HeroForVr.from_pretrained(
model_config,
state_dict=checkpoint,
vfeat_dim=VFEAT_DIM,
max_frm_seq_len=max_frm_seq_len,
lw_neg_ctx=model_opts.lw_neg_ctx,
lw_neg_q=model_opts.lw_neg_q,
ranking_loss_type=model_opts.ranking_loss_type,
use_hard_negative=False,
hard_pool_size=model_opts.hard_pool_size,
margin=model_opts.margin,
use_all_neg=model_opts.use_all_neg)
model.to(device)
if opts.fp16:
model = amp.initialize(model, enabled=opts.fp16, opt_level='O2')
eval_dataloader = DataLoader(eval_dataset, batch_size=opts.batch_size,
num_workers=opts.n_workers,
pin_memory=opts.pin_mem,
collate_fn=vr_full_eval_collate)
eval_dataloader = PrefetchLoader(eval_dataloader)
_, results = validate_full_vr(
model, eval_dataloader, opts.split, opts, model_opts)
result_dir = f'{opts.output_dir}/results_{opts.split}'
if not exists(result_dir) and rank == 0:
os.makedirs(result_dir)
all_results_list = all_gather_list(results)
if hvd.rank() == 0:
all_results = {"video2idx": all_results_list[0]["video2idx"]}
for rank_id in range(hvd.size()):
for key, val in all_results_list[rank_id].items():
if key == "video2idx":
continue
if key not in all_results:
all_results[key] = []
all_results[key].extend(all_results_list[rank_id][key])
LOGGER.info('All results joined......')
save_json(
all_results,
f'{result_dir}/results_{opts.checkpoint}_all.json')
LOGGER.info('All results written......')
@torch.no_grad()
def validate_full_vr(model, val_loader, split, opts, model_opts):
LOGGER.info("start running full VR evaluation"
f"on {opts.task} {split} split...")
model.eval()
n_ex = 0
st = time()
val_log = {}
has_gt_target = True # MSRVTT test set has annotations
try:
video2idx_global = val_loader.dataset.vid2idx[split]
except Exception:
video2idx_global = val_loader.dataset.vid2idx
video_ids = sorted(list(video2idx_global.keys()))
video2idx_local = {e: i for i, e in enumerate(video_ids)}
query_data = val_loader.dataset.query_data
partial_query_data = []
total_frame_embeddings = None
video_batch, video_idx = [], []
max_clip_len = 0
for video_i, (vid, vidx) in tqdm(enumerate(video2idx_local.items()),
desc="Computing Video Embeddings",
total=len(video2idx_local)):
video_item = val_loader.dataset.video_db[vid]
video_batch.append(video_item)
video_idx.append(vidx)
if len(video_batch) == opts.vr_eval_video_batch_size or\
video_i == len(video2idx_local) - 1:
video_batch = move_to_cuda(video_collate(video_batch))
# Safeguard fp16
for k, item in video_batch.items():
if isinstance(item, torch.Tensor) and\
item.dtype == torch.float32:
video_batch[k] = video_batch[k].to(
dtype=next(model.parameters()).dtype)
curr_frame_embeddings = model.v_encoder(video_batch, 'repr')
curr_c_attn_masks = video_batch['c_attn_masks']
curr_clip_len = curr_frame_embeddings.size(-2)
assert curr_clip_len <= model_opts.max_clip_len
if total_frame_embeddings is None:
feat_dim = curr_frame_embeddings.size(-1)
total_frame_embeddings = torch.zeros(
(len(video2idx_local), model_opts.max_clip_len, feat_dim),
dtype=curr_frame_embeddings.dtype,
device=curr_frame_embeddings.device)
total_c_attn_masks = torch.zeros(
(len(video2idx_local), model_opts.max_clip_len),
dtype=curr_c_attn_masks.dtype,
device=curr_frame_embeddings.device)
indices = torch.LongTensor(video_idx)
total_frame_embeddings[indices, :curr_clip_len] =\
curr_frame_embeddings
total_c_attn_masks[indices, :curr_clip_len] =\
curr_c_attn_masks
max_clip_len = max(max_clip_len, curr_clip_len)
video_batch, video_idx = [], []
total_frame_embeddings = total_frame_embeddings[:, :max_clip_len, :]
total_c_attn_masks = total_c_attn_masks[:, :max_clip_len]
sorted_q2c_indices, sorted_q2c_scores = None, None
total_qids, total_vids = [], []
for batch in tqdm(val_loader, desc="Computing q2vScores"):
qids = batch['qids']
vids = batch['vids']
del batch['targets']
del batch['qids']
del batch['vids']
total_qids.extend(qids)
total_vids.extend(vids)
for qid in qids:
# fix msrvtt query data to have tvr format
gt = query_data[qid]
gt["desc_id"] = qid
gt["vid_name"] = gt["clip_name"]
partial_query_data.append(gt)
# Safeguard fp16
for k, item in batch.items():
if isinstance(item, torch.Tensor) and item.dtype == torch.float32:
batch[k] = batch[k].to(
dtype=next(model.parameters()).dtype)
# FIXME
_q2video_scores = model.get_pred_from_raw_query(
total_frame_embeddings, total_c_attn_masks, **batch,
cross=True, val_gather_gpus=False)
n_ex += len(qids)
_q2video_scores = _q2video_scores.float()
q2video_scores = _q2video_scores
_sorted_q2c_scores, _sorted_q2c_indices = \
torch.topk(q2video_scores, model_opts.max_vr_video,
dim=1, largest=True)
if sorted_q2c_indices is None:
sorted_q2c_indices = _sorted_q2c_indices.cpu().numpy()
sorted_q2c_scores = _sorted_q2c_scores.cpu().numpy()
else:
sorted_q2c_indices = np.concatenate(
(sorted_q2c_indices, _sorted_q2c_indices.cpu().numpy()),
axis=0)
sorted_q2c_scores = np.concatenate(
(sorted_q2c_scores, _sorted_q2c_scores.cpu().numpy()),
axis=0)
vr_res = []
for vr_i, (_sorted_q2c_scores_row, _sorted_q2c_indices_row) in tqdm(
enumerate(
zip(sorted_q2c_scores[:, :100],
sorted_q2c_indices[:, :100])),
desc="[VR] Loop over queries to generate predictions",
total=len(total_qids)):
cur_vr_redictions = []
for v_score, v_meta_idx in zip(_sorted_q2c_scores_row,
_sorted_q2c_indices_row):
video_idx = video2idx_global[video_ids[v_meta_idx]]
cur_vr_redictions.append([video_idx, 0, 0, float(v_score)])
cur_query_pred = dict(desc_id=total_qids[vr_i],
desc="",
predictions=cur_vr_redictions)
vr_res.append(cur_query_pred)
eval_res = dict(VR=vr_res)
eval_res = {k: v for k, v in eval_res.items() if len(v) != 0}
eval_res["video2idx"] = video2idx_global
eval_submission = get_submission_top_n(
eval_res, top_n=model_opts.max_vr_video)
if has_gt_target:
metrics = eval_retrieval(eval_submission, partial_query_data,
iou_thds=VCMR_IOU_THDS,
match_number=True,
verbose=False,
use_desc_type=False)
if model_opts.distributed_eval:
n_ex_per_rank = all_gather_list(n_ex)
metrics_per_rank = all_gather_list(metrics)
else:
n_ex_per_rank = [n_ex]
metrics_per_rank = [metrics]
n_ex = sum(n_ex_per_rank)
val_log = {}
gathered_metrics = {}
for task_type, task_metric in metrics.items():
gathered_metrics[task_type] = {}
for k in task_metric.keys():
if k == "desc_type_ratio":
continue
gathered_v = 0
for idx, n in enumerate(n_ex_per_rank):
gathered_v += n*metrics_per_rank[idx][task_type][k]
gathered_v = gathered_v / n_ex
gathered_metrics[task_type][k] = gathered_v
val_log[
f'valid_{split}_{task_type}/{task_type}_{k}'] = gathered_v
LOGGER.info("metrics_VR \n{}".format(pprint.pformat(
gathered_metrics["VR"], indent=4)))
tot_time = time()-st
val_log.update(
{f'valid/vr_{split}_ex_per_s': n_ex/tot_time})
LOGGER.info(f"validation finished in {int(tot_time)} seconds")
model.train()
return val_log, eval_submission
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--sub_txt_db",
default="/txt/msrvtt_subtitles.db",
type=str,
help="The input video subtitle corpus. (LMDB)")
parser.add_argument("--vfeat_db",
default="/video/msrvtt", type=str,
help="The input video frame features.")
parser.add_argument("--query_txt_db",
default="/txt/msrvtt_val.db",
type=str,
help="The input test query corpus. (LMDB)")
parser.add_argument("--split", choices=["val", "test"],
default="val", type=str,
help="The input query split")
parser.add_argument("--task", choices=["msrvtt_video_sub",
"msrvtt_video_only"],
default="msrvtt_video_sub", type=str,
help="The evaluation vr task")
parser.add_argument("--checkpoint",
default=None, type=str,
help="pretrained model checkpoint steps")
parser.add_argument("--batch_size",
default=80, type=int,
help="number of queries in a batch")
parser.add_argument("--vr_eval_video_batch_size",
default=50, type=int,
help="number of videos in a batch")
parser.add_argument(
"--output_dir", default=None, type=str,
help="The output directory where the model checkpoints will be "
"written.")
# device parameters
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead "
"of 32-bit")
parser.add_argument('--n_workers', type=int, default=4,
help="number of data workers")
parser.add_argument('--pin_mem', action='store_true',
help="pin memory")
args = parser.parse_args()
# options safe guard
# TODO
main(args)