-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtrain_violin.py
265 lines (229 loc) · 10.1 KB
/
train_violin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
Training Violin
"""
from config.config import shared_configs
from collections import defaultdict
import os
from os.path import exists, join
from time import time
import torch
from torch.nn.utils import clip_grad_norm_
from apex import amp
from horovod import torch as hvd
from tqdm import tqdm
from data import QaQueryTokLmdb, PrefetchLoader, MetaLoader
from load_data import (
get_video_ids, load_video_sub_dataset, build_downstream_dataloaders)
from model.violin import HeroForViolin
from optim import get_lr_sched
from optim.misc import build_optimizer
from utils.logger import LOGGER, TB_LOGGER, RunningMeter, add_log_to_file
from utils.distributed import (all_reduce_and_rescale_tensors, all_gather_list,
broadcast_tensors)
from utils.save import ModelSaver, save_training_meta, TrainingRestorer
from utils.misc import NoOp, set_dropout, set_random_seed
from utils.const import VFEAT_DIM, MAX_FRM_SEQ_LEN
from utils.basic_utils import save_json
from eval_violin import validate_violin
def main(opts):
hvd.init()
n_gpu = hvd.size()
device = torch.device("cuda", hvd.local_rank())
torch.cuda.set_device(hvd.local_rank())
opts.n_gpu = n_gpu
LOGGER.info("device: {} n_gpu: {}, rank: {}, "
"16-bits training: {}".format(
device, n_gpu, hvd.rank(), opts.fp16))
if hvd.rank() != 0:
LOGGER.disabled = True
set_random_seed(opts.seed)
# train_examples = None
LOGGER.info(f"Loading the whole video dataset {opts.sub_txt_db}, "
f"{opts.vfeat_db}")
video_db = load_video_sub_dataset(
opts.vfeat_db, opts.sub_txt_db, opts.vfeat_interval, opts)
# data loaders
# train
video_ids = get_video_ids(opts.train_query_txt_db)
train_q_txt_db = QaQueryTokLmdb(opts.train_query_txt_db,
opts.max_txt_len)
train_dataloaders = build_downstream_dataloaders(
[opts.task], video_db, video_ids,
True, opts, q_txt_db=train_q_txt_db,
shuffle=True)
meta_loader = MetaLoader(train_dataloaders,
accum_steps=opts.gradient_accumulation_steps,
distributed=n_gpu > 1)
meta_loader = PrefetchLoader(meta_loader)
# val
video_ids = get_video_ids(opts.val_query_txt_db)
val_q_txt_db = QaQueryTokLmdb(opts.val_query_txt_db, -1)
val_dataloaders = build_downstream_dataloaders(
[opts.task], video_db, video_ids,
False, opts, q_txt_db=val_q_txt_db)
# test
video_ids = get_video_ids(opts.test_query_txt_db)
test_q_txt_db = QaQueryTokLmdb(opts.test_query_txt_db, -1)
test_dataloaders = build_downstream_dataloaders(
[opts.task], video_db, video_ids,
False, opts, q_txt_db=test_q_txt_db)
# Prepare model
if opts.checkpoint:
checkpoint = torch.load(opts.checkpoint)
else:
checkpoint = {}
img_pos_embed_weight_key = "v_encoder.f_encoder.img_embeddings" +\
".position_embeddings.weight"
max_frm_seq_len = MAX_FRM_SEQ_LEN
if img_pos_embed_weight_key in checkpoint:
checkpoint_img_seq_len = len(checkpoint[img_pos_embed_weight_key])
if checkpoint_img_seq_len < max_frm_seq_len:
old_weight = checkpoint[img_pos_embed_weight_key]
new_weight = torch.zeros(
max_frm_seq_len, old_weight.shape[1])
new_weight.data[:checkpoint_img_seq_len, :].copy_(old_weight)
checkpoint[img_pos_embed_weight_key] = new_weight
else:
max_frm_seq_len = checkpoint_img_seq_len
model = HeroForViolin.from_pretrained(
opts.model_config,
state_dict=checkpoint,
vfeat_dim=VFEAT_DIM,
max_frm_seq_len=max_frm_seq_len)
model.to(device)
# make sure every process has same model parameters in the beginning
broadcast_tensors([p.data for p in model.parameters()], 0)
set_dropout(model, opts.dropout)
# Prepare optimizer
optimizer = build_optimizer(model, opts)
task2scaler = {t: i for i, t in enumerate(train_dataloaders.keys())}
model, optimizer = amp.initialize(model, optimizer,
num_losses=len(task2scaler),
enabled=opts.fp16, opt_level='O2')
restorer = TrainingRestorer(opts, model, optimizer)
global_step = restorer.global_step
TB_LOGGER.global_step = global_step
if hvd.rank() == 0:
save_training_meta(opts)
TB_LOGGER.create(join(opts.output_dir, 'log'))
pbar = tqdm(total=opts.num_train_steps)
model_saver = ModelSaver(join(opts.output_dir, 'ckpt'))
if not exists(join(opts.output_dir, 'results')):
# store violin predictions
os.makedirs(join(opts.output_dir, 'results'))
add_log_to_file(join(opts.output_dir, 'log', 'log.txt'))
else:
LOGGER.disabled = True
pbar = NoOp()
model_saver = NoOp()
restorer = NoOp()
if global_step > 0:
pbar.update(global_step)
LOGGER.info(f"***** Running training with {n_gpu} GPUs *****")
LOGGER.info(opts)
LOGGER.info(" Batch size = %d", opts.train_batch_size)
LOGGER.info(" Accumulate steps = %d", opts.gradient_accumulation_steps)
LOGGER.info(" Num steps = %d", opts.num_train_steps)
task2loss = {task: RunningMeter(f'loss/{task}')
for task in train_dataloaders.keys()}
model.train()
n_examples = defaultdict(int)
start = time()
# quick hack for amp delay_unscale bug
optimizer.zero_grad()
if global_step == 0:
optimizer.step()
for step, (task, batch) in enumerate(meta_loader):
n_examples[task] += opts.train_batch_size
loss = model(batch, task=task, compute_loss=True)
loss = loss.mean()
task2loss[task](loss.item())
delay_unscale = (step+1) % opts.gradient_accumulation_steps != 0
with amp.scale_loss(loss, optimizer, delay_unscale=delay_unscale,
loss_id=task2scaler[task]) as scaled_loss:
scaled_loss.backward()
if not delay_unscale:
# gather gradients from every processes
# do this before unscaling to make sure every process uses
# the same gradient scale
grads = [p.grad.data for p in model.parameters()
if p.requires_grad and p.grad is not None]
all_reduce_and_rescale_tensors(grads, float(1))
if (step + 1) % opts.gradient_accumulation_steps == 0:
global_step += 1
# learning rate scheduling
lr_this_step = get_lr_sched(global_step, opts)
for i, param_group in enumerate(optimizer.param_groups):
if i == 0 or i == 1:
param_group['lr'] = lr_this_step * opts.lr_mul
elif i == 2 or i == 3:
param_group['lr'] = lr_this_step
else:
raise ValueError()
TB_LOGGER.add_scalar('lr', lr_this_step, global_step)
TB_LOGGER.log_scaler_dict({ll.name: ll.val
for ll in task2loss.values()
if ll.val is not None})
TB_LOGGER.step()
# update model params
if opts.grad_norm != -1:
grad_norm = clip_grad_norm_(amp.master_params(optimizer),
opts.grad_norm)
TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step)
optimizer.step()
optimizer.zero_grad()
restorer.step()
pbar.update(1)
if global_step % 100 == 0:
# monitor training throughput
LOGGER.info('-------------------------------------------')
LOGGER.info(f'Step {global_step}:')
for t in train_dataloaders.keys():
tot_ex = sum(all_gather_list(n_examples[t]))
ex_per_sec = int(tot_ex / (time()-start))
LOGGER.info(f'{t}: {tot_ex} examples trained at '
f'{ex_per_sec} ex/s')
TB_LOGGER.add_scalar(f'perf/{t}_ex_per_s', ex_per_sec,
global_step)
if global_step % opts.valid_steps == 0:
LOGGER.info('===========================================')
LOGGER.info(f"Step {global_step}: start running validation")
validate(model, val_dataloaders, "val",
opts, global_step=global_step)
validate(model, test_dataloaders, "test",
opts, global_step=global_step)
LOGGER.info('===========================================')
model_saver.save(model, global_step)
if global_step >= opts.num_train_steps:
break
LOGGER.info('===========================================')
if global_step % opts.valid_steps != 0:
LOGGER.info('===========================================')
LOGGER.info(f"Step {global_step}: start running validation")
validate(model, val_dataloaders, "val",
opts, global_step=global_step)
validate(model, test_dataloaders, "test",
opts, global_step=global_step)
LOGGER.info('===========================================')
model_saver.save(model, f'{global_step}_final')
def validate(model, val_dataloaders, split, opts, global_step=0):
model.eval()
task = opts.task
loader = val_dataloaders[task]
LOGGER.info(f"validate on {task} task")
val_log, results, _ = validate_violin(
model, loader, split=split, save_logits=False)
save_json(
results,
f'{opts.output_dir}/results/'
f'val_results_{global_step}'
f'_rank{hvd.rank()}_final.json')
val_log = {f'{task}_{k}': v for k, v in val_log.items()}
TB_LOGGER.log_scaler_dict(
{f'valid_{task}/{k}': v for k, v in val_log.items()})
model.train()
if __name__ == "__main__":
args = shared_configs.get_violin_args()
main(args)