forked from supasorn/synthesizing_obama_network_training
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
230 lines (177 loc) · 8.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import sys
from util import *
import json
import copy
import random
import platform
import bisect
import numpy as np
class Speech(TFBase):
def __init__(self):
super(Speech, self).__init__()
self.parser.add_argument('--timedelay', type=int, default=20,
help='time delay between output and input')
self.parser.add_argument('--rnn_size', type=int, default=60,
help='size of RNN hidden state')
self.parser.add_argument('--num_layers', type=int, default=1,
help='number of layers in the RNN')
self.parser.add_argument('--batch_size', type=int, default=100,
help='minibatch size')
self.parser.add_argument('--seq_length', type=int, default=100,
help='RNN sequence length')
self.parser.add_argument('--input', type=str, default='',
help='input for generation')
self.parser.add_argument('--input2', type=str, default='',
help='input for any mfcc wav file name withou extension that was located in audio/normalize-cep13')
self.parser.add_argument('--guy', type=str, default='Obama2',
help='dataset')
self.parser.add_argument('--normalizeoutput', action='store_true')
self.args = self.parser.parse_args()
if self.args.save_dir == "":
raise ValueError('Missing save_dir')
# self.training_dir = base + "/face-singleview/data/" + self.args.guy + "/"
self.training_dir = "obama_data/"
self.fps = 29.97
self.loadData()
self.model = self.standardL2Model
self.audioinput = len(self.args.input2)
if (self.audioinput):
self.args.input = self.args.input2
if len(self.args.input):
self.test()
else:
self.train()
def createInputFeature(self, audio, audiodiff, timestamps, startframe, nframe):
startAudio = bisect.bisect_left(timestamps, (startframe - 1) / self.fps)
endAudio = bisect.bisect_right(timestamps, (startframe + nframe - 2) / self.fps)
inp = np.concatenate((audio[startAudio:endAudio, :-1], audiodiff[startAudio:endAudio, :]), axis=1)
return startAudio, endAudio, inp
def preprocess(self, save_dir):
files = [x.split("\t")[0].strip() for x in open(self.training_dir + "processed_fps.txt", "r").readlines()]
inps = {"training": [], "validation": []}
outps = {"training": [], "validation": []}
# validation = 0.2
validation = 0
for i in range(len(files)):
tp = "training" if random.random() > validation else "validation"
dnums = sorted([os.path.basename(x) for x in glob.glob(self.training_dir + files[i] + "}}*")])
audio = np.load(self.training_dir + "/audio/normalized-cep13/" + files[i] + ".wav.npy")
audiodiff = audio[1:,:-1] - audio[:-1, :-1]
print (files[i], audio.shape, tp)
timestamps = audio[:, -1]
for dnum in dnums:
print (dnum )
fids = readCVFloatMat(self.training_dir + dnum + "/frontalfidsCoeff_unrefined.bin")
if not os.path.exists(self.training_dir + dnum + "/startframe.txt"):
startframe = 1
else:
startframe = readSingleInt(self.training_dir + dnum + "/startframe.txt")
nframe = readSingleInt(self.training_dir + dnum + "/nframe.txt")
startAudio, endAudio, inp = self.createInputFeature(audio, audiodiff, timestamps, startframe, nframe)
outp = np.zeros((endAudio - startAudio, fids.shape[1]), dtype=np.float32)
leftmark = 0
for aud in range(startAudio, endAudio):
audiotime = audio[aud, -1]
while audiotime >= (startframe - 1 + leftmark + 1) / self.fps:
leftmark += 1
t = (audiotime - (startframe - 1 + leftmark) / self.fps) * self.fps;
outp[aud - startAudio, :] = fids[leftmark, :] * (1 - t) + fids[min(len(fids) - 1, leftmark + 1), :] * t;
inps[tp].append(inp)
outps[tp].append(outp)
return (inps, outps)
def standardL2Model(self, args, infer=False):
if infer:
args.batch_size = 1
args.seq_length = 1
cell_fn = tf.nn.rnn_cell.LSTMCell
cell = cell_fn(args.rnn_size, state_is_tuple=True)
if infer == False and args.keep_prob < 1: # training mode
cell0 = tf.nn.rnn_cell.DropoutWrapper(cell, input_keep_prob = args.keep_prob)
cell1 = tf.nn.rnn_cell.DropoutWrapper(cell, input_keep_prob = args.keep_prob, output_keep_prob = args.keep_prob)
self.network = tf.nn.rnn_cell.MultiRNNCell([cell0] * (args.num_layers -1) + [cell1], state_is_tuple=True)
else:
self.network = tf.nn.rnn_cell.MultiRNNCell([cell] * args.num_layers, state_is_tuple=True)
self.input_data = tf.placeholder(dtype=tf.float32, shape=[None, args.seq_length, self.dimin])
self.target_data = tf.placeholder(dtype=tf.float32, shape=[None, args.seq_length, self.dimout])
self.initial_state = self.network.zero_state(batch_size=args.batch_size, dtype=tf.float32)
with tf.variable_scope('rnnlm'):
output_w = tf.get_variable("output_w", [args.rnn_size, self.dimout])
output_b = tf.get_variable("output_b", [self.dimout])
# Old code
#inputs = tf.split(1, args.seq_length, self.input_data)
inputs = tf.split(value=self.input_data, num_or_size_splits=args.seq_length, axis=1)
inputs = [tf.squeeze(input_, [1]) for input_ in inputs]
outputs, states = tf.contrib.legacy_seq2seq.rnn_decoder(inputs, self.initial_state, self.network, loop_function=None, scope='rnnlm')
#output = tf.reshape(tf.concat(1, outputs), [-1, args.rnn_size])
output = tf.reshape(tf.concat(outputs, axis=1), [-1, args.rnn_size])
output = tf.nn.xw_plus_b(output, output_w, output_b)
self.final_state = states
self.output = output
flat_target_data = tf.reshape(self.target_data,[-1, self.dimout])
lossfunc = tf.reduce_sum(tf.squared_difference(flat_target_data, output))
#lossfunc = tf.reduce_sum(tf.abs(flat_target_data - output))
self.cost = lossfunc / (args.batch_size * args.seq_length * self.dimout)
self.lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars), args.grad_clip)
optimizer = tf.train.AdamOptimizer(self.lr)
self.train_op = optimizer.apply_gradients(zip(grads, tvars))
def load_preprocessed(self, inps, outps):
newinps = {"training": [], "validation": []}
newoutps = {"training": [], "validation": []}
for key in newinps:
for i in range(len(inps[key])):
if len(inps[key][i]) - self.args.timedelay >= (self.args.seq_length+2):
if self.args.timedelay > 0:
newinps[key].append(inps[key][i][self.args.timedelay:])
newoutps[key].append(outps[key][i][:-self.args.timedelay])
else:
newinps[key].append(inps[key][i])
newoutps[key].append(outps[key][i])
print ("load preprocessed", len(newinps), len(newoutps))
return newinps, newoutps
def sample(self, sess, args, data, pt):
if self.audioinput:
self.sample_audioinput(sess, args, data, pt)
else:
self.sample_videoinput(sess, args, data, pt)
def sample_audioinput(self, sess, args, data, pt):
meani, stdi, meano, stdo = data["inputmean"], data["inputstd"], data["outputmean"], data["outputstd"]
audio = np.load(self.training_dir + "/audio/normalized-cep13/" + self.args.input2 + ".wav.npy")
audiodiff = audio[1:,:-1] - audio[:-1, :-1]
timestamps = audio[:, -1]
times = audio[:, -1]
inp = np.concatenate((audio[:-1, :-1], audiodiff[:, :]), axis=1)
state = []
for c, m in self.initial_state: # initial_state: ((c1, m1), (c2, m2))
state.append((c.eval(), m.eval()))
if not os.path.exists("results/"):
os.mkdir("results/")
f = open("results/" + self.args.input2 + "_" + args.save_dir + ".txt", "w")
print ("output to results/" + self.args.input2 + "_" + args.save_dir + ".txt")
f.write("%d %d\n" % (len(inp), self.dimout + 1))
fetches = []
fetches.append(self.output)
for c, m in self.final_state: # final_state: ((c1, m1), (c2, m2))
fetches.append(c)
fetches.append(m)
feed_dict = {}
for i in range(len(inp)):
for j, (c, m) in enumerate(self.initial_state):
feed_dict[c], feed_dict[m] = state[j]
input = (inp[i] - meani) / stdi
feed_dict[self.input_data] = [[input]]
res = sess.run(fetches, feed_dict)
output = res[0] * stdo + meano
if i >= args.timedelay:
shifttime = times[i - args.timedelay]
else:
shifttime = times[0]
f.write(("%f " % shifttime) + " ".join(["%f" % x for x in output[0]]) + "\n")
state_flat = res[1:]
state = [state_flat[i:i+2] for i in range(0, len(state_flat), 2)]
f.close()
def main():
s = Speech()
if __name__ == '__main__':
main()