forked from karpathy/llama2.c
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_all.py
53 lines (48 loc) · 1.68 KB
/
test_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""
Run simply with
$ pytest
"""
import os
import pytest # pip install pytest
import subprocess
import torch
from model import ModelArgs, Transformer
def test_argmax_inference():
"""
Only the simplest test for now: run inference with temperature 0
(for determinism) in both C and PyTorch, and see that the sampled tokens
are the same.
"""
test_ckpt_dir = "out" # TODO create a dummy test checkpoint for this?
# run C version
model_path = os.path.join(test_ckpt_dir, "model.bin")
command = ["./run", model_path, "0.0"]
proc = subprocess.Popen(command, stdout=subprocess.PIPE)
c_tokens = []
for line in proc.stdout:
token = int(line.decode('utf-8').strip())
c_tokens.append(token)
proc.wait()
#print(c_tokens)
# run PyTorch version
device = "cuda" if torch.cuda.is_available() else "cpu"
ckpt_path = os.path.join(test_ckpt_dir, "ckpt.pt")
checkpoint = torch.load(ckpt_path, map_location=device)
gptconf = ModelArgs(**checkpoint['model_args'])
model = Transformer(gptconf)
state_dict = checkpoint['model']
unwanted_prefix = '_orig_mod.'
for k,v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
model.load_state_dict(state_dict, strict=False)
model.eval()
model.to(device)
x = torch.tensor([[1]], dtype=torch.long, device=device) # 1 is BOS
with torch.inference_mode():
y = model.generate(x, max_new_tokens=gptconf.max_seq_len, temperature=0.0)
pt_tokens = y[0].tolist()
pt_tokens = pt_tokens[1:] # remove BOS
#print(pt_tokens)
# compare
assert c_tokens == pt_tokens