-
Notifications
You must be signed in to change notification settings - Fork 0
/
on_lstm.py
203 lines (160 loc) · 6.76 KB
/
on_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""
copied from https://github.com/yikangshen/Ordered-Neurons/blob/master/ON_LSTM.py
"""
import torch.nn.functional as F
import torch.nn as nn
import torch
from torch.autograd import Variable
class LockedDropout(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, dropout=0.5):
if not self.training or not dropout:
return x
m = x.data.new(1, x.size(1), x.size(2)).bernoulli_(1 - dropout)
mask = Variable(m, requires_grad=False) / (1 - dropout)
mask = mask.expand_as(x)
return mask * x
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(features))
self.beta = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.gamma * (x - mean) / (std + self.eps) + self.beta
class LinearDropConnect(nn.Linear):
def __init__(self, in_features, out_features, bias=True, dropout=0.):
super(LinearDropConnect, self).__init__(
in_features=in_features,
out_features=out_features,
bias=bias
)
self.dropout = dropout
def sample_mask(self):
if self.dropout == 0.:
self._weight = self.weight
else:
mask = self.weight.new_empty(
self.weight.size(),
dtype=torch.uint8
)
mask.bernoulli_(self.dropout)
self._weight = self.weight.masked_fill(mask.to(torch.bool), 0.)
def forward(self, input, sample_mask=False):
if self.training:
if sample_mask:
self.sample_mask()
return F.linear(input, self._weight, self.bias)
else:
return F.linear(input, self.weight * (1 - self.dropout),
self.bias)
def cumsoftmax(x, dim=-1):
return torch.cumsum(F.softmax(x, dim=dim), dim=dim)
class ONLSTMCell(nn.Module):
def __init__(self, input_size, hidden_size, chunk_size, dropconnect=0.):
super(ONLSTMCell, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.chunk_size = chunk_size
self.n_chunk = int(hidden_size / chunk_size)
self.ih = nn.Sequential(
nn.Linear(input_size, 4 * hidden_size + self.n_chunk * 2, bias=True),
# LayerNorm(3 * hidden_size)
)
self.hh = LinearDropConnect(hidden_size, hidden_size*4+self.n_chunk*2, bias=True, dropout=dropconnect)
# self.c_norm = LayerNorm(hidden_size)
self.drop_weight_modules = [self.hh]
def forward(self, input, hidden,
transformed_input=None):
hx, cx = hidden
if transformed_input is None:
transformed_input = self.ih(input)
gates = transformed_input + self.hh(hx)
cingate, cforgetgate = gates[:, :self.n_chunk*2].chunk(2, 1)
outgate, cell, ingate, forgetgate = gates[:,self.n_chunk*2:].view(-1, self.n_chunk*4, self.chunk_size).chunk(4,1)
cingate = 1. - cumsoftmax(cingate)
cforgetgate = cumsoftmax(cforgetgate)
distance_cforget = 1. - cforgetgate.sum(dim=-1) / self.n_chunk
distance_cin = cingate.sum(dim=-1) / self.n_chunk
cingate = cingate[:, :, None]
cforgetgate = cforgetgate[:, :, None]
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cell = torch.tanh(cell)
outgate = torch.sigmoid(outgate)
# cy = cforgetgate * forgetgate * cx + cingate * ingate * cell
overlap = cforgetgate * cingate
forgetgate = forgetgate * overlap + (cforgetgate - overlap)
ingate = ingate * overlap + (cingate - overlap)
cy = forgetgate * cx + ingate * cell
# hy = outgate * torch.tanh(self.c_norm(cy))
hy = outgate * torch.tanh(cy)
return hy.view(-1, self.hidden_size), cy, (distance_cforget, distance_cin)
def init_hidden(self, bsz):
weight = next(self.parameters()).data
return (weight.new(bsz, self.hidden_size).zero_(),
weight.new(bsz, self.n_chunk, self.chunk_size).zero_())
def sample_masks(self):
for m in self.drop_weight_modules:
m.sample_mask()
class ONLSTMStack(nn.Module):
def __init__(self, layer_sizes, chunk_size, dropout=0., dropconnect=0.):
super(ONLSTMStack, self).__init__()
self.cells = nn.ModuleList([ONLSTMCell(layer_sizes[i],
layer_sizes[i+1],
chunk_size,
dropconnect=dropconnect)
for i in range(len(layer_sizes) - 1)])
self.lockdrop = LockedDropout()
self.dropout = dropout
self.sizes = layer_sizes
def init_hidden(self, bsz):
return [c.init_hidden(bsz) for c in self.cells]
def forward(self, input, hidden=None):
length, batch_size, _ = input.size()
if hidden is None:
hidden = self.init_hidden(batch_size)
if self.training:
for c in self.cells:
c.sample_masks()
prev_state = list(hidden)
prev_layer = input
raw_outputs = []
outputs = []
distances_forget = []
distances_in = []
for l in range(len(self.cells)):
curr_layer = [None] * length
dist = [None] * length
t_input = self.cells[l].ih(prev_layer)
for t in range(length):
hidden, cell, d = self.cells[l](
None, prev_state[l],
transformed_input=t_input[t]
)
prev_state[l] = hidden, cell # overwritten every timestep
curr_layer[t] = hidden
dist[t] = d
prev_layer = torch.stack(curr_layer)
dist_cforget, dist_cin = zip(*dist)
dist_layer_cforget = torch.stack(dist_cforget)
dist_layer_cin = torch.stack(dist_cin)
raw_outputs.append(prev_layer)
if l < len(self.cells) - 1:
prev_layer = self.lockdrop(prev_layer, self.dropout)
outputs.append(prev_layer)
distances_forget.append(dist_layer_cforget)
distances_in.append(dist_layer_cin)
output = prev_layer
return output, prev_state, raw_outputs, outputs, (torch.stack(distances_forget), torch.stack(distances_in))
if __name__ == "__main__":
x = torch.Tensor(10, 20, 30)
x.data.normal_()
lstm = ONLSTMStack([30, 30, 30], chunk_size=10)
# print(lstm(x, lstm.init_hidden(10))[1])
print(lstm(x)[0])
print(lstm(x)[0].shape)
print(lstm)