-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconvert1_coreml.py
executable file
·228 lines (191 loc) · 7.29 KB
/
convert1_coreml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#!/usr/bin/env python3
import tensorflow as tf
import coremltools as ct
import numpy as np
from PIL import Image
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import os
import io
from datetime import datetime
import net
class TextDetectorModel(tf.keras.models.Model):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.detector = net.CenterNetDetectionBlock(pre_weight=False)
self.decoder = net.SimpleDecoderBlock()
inputs = tf.keras.Input(shape=(net.height,net.width,3))
self.detector(inputs)
def convert1(ckpt_dir='ckpt1'):
model = TextDetectorModel()
last = tf.train.latest_checkpoint(ckpt_dir)
print(last)
model.load_weights(last).expect_partial()
# import logging
# logging.basicConfig(filename='debug.log', level=logging.DEBUG)
#########################################################################
print('detector')
inputs = tf.keras.Input(shape=(net.height,net.width,3), name='Image')
heatmap, feature = model.detector(inputs)
keymap = heatmap[...,0]
local_peak = tf.nn.max_pool2d(keymap[...,tf.newaxis],5,1,'SAME')
keep = local_peak[...,0] == keymap
keymap = tf.math.sigmoid(keymap)
detectedkey = keymap * tf.cast(keep, tf.float32)
textlines = tf.math.sigmoid(heatmap[...,5])
separator = tf.math.sigmoid(heatmap[...,6])
xsize = heatmap[...,1]
ysize = heatmap[...,2]
w = tf.math.exp(xsize - 3) * 1024
h = tf.math.exp(ysize - 3) * 1024
xoffset = heatmap[...,3]
yoffset = heatmap[...,4]
dx = xoffset * net.scale
dy = yoffset * net.scale
code_map = []
for k in range(4):
code_map.append(tf.math.sigmoid(heatmap[...,7+k]))
outputs = {
'Output_heatmap': tf.stack([keymap, detectedkey, w, h, dx, dy, textlines, separator, *code_map], axis=-1),
'Output_feature': feature,
}
detector = tf.keras.Model(inputs, outputs, name='CenterNetBlock')
mlmodel_detector = ct.convert(detector,
inputs=[
ct.ImageType(shape=(1, net.height, net.width, 3))
],
convert_to="mlprogram",
compute_units=ct.ComputeUnit.CPU_AND_NE,
minimum_deployment_target=ct.target.iOS16)
mlmodel_detector.version = datetime.now().strftime("%Y%m%d%H%M%S")
spec = mlmodel_detector.get_spec()
# get output names
output_names = [out.name for out in spec.description.output]
output_names = {k: int((k.split('_')[1:]+['0'])[0]) for k in output_names }
org_output_names = sorted(outputs.keys())
for name, idx in output_names.items():
ct.utils.rename_feature(spec, name, org_output_names[idx])
mlmodel_detector_fix = ct.models.MLModel(spec, weights_dir=mlmodel_detector.weights_dir)
mlmodel_detector_fix.save("TextDetector.mlpackage")
############################################################################
print('decoder')
embedded = tf.keras.Input(shape=(net.feature_dim,), name='Input')
decoder_outputs = model.decoder(embedded)
ids = []
p_id = None
for decoder_id1 in decoder_outputs:
prob_id1 = tf.nn.softmax(decoder_id1, -1)
pred_id1 = tf.math.argmax(prob_id1, axis=-1)
prob_id1 = tf.math.reduce_sum(tf.one_hot(pred_id1, tf.shape(prob_id1)[-1]) * prob_id1, -1)
if p_id is None:
p_id = tf.math.log(tf.math.maximum(prob_id1,1e-7))
else:
p_id += tf.math.log(tf.math.maximum(prob_id1,1e-7))
ids.append(pred_id1)
ids = tf.stack(ids, axis=-1)
p_id = tf.exp(p_id / len(decoder_outputs))
outputs = {
'Output_id': tf.cast(ids, tf.float32),
'Output_p': p_id,
}
decoder = tf.keras.Model(embedded, outputs, name='SimpleDecoderBlock')
mlmodel_decoder = ct.convert(decoder,
convert_to="mlprogram",
inputs=[
ct.TensorType(shape=(1, net.feature_dim))
],
compute_units=ct.ComputeUnit.CPU_AND_NE,
minimum_deployment_target=ct.target.iOS16)
mlmodel_decoder.version = datetime.now().strftime("%Y%m%d%H%M%S")
spec = mlmodel_decoder.get_spec()
# get output names
output_names = [out.name for out in spec.description.output]
output_names = {k: int((k.split('_')[1:]+['0'])[0]) for k in output_names }
org_output_names = sorted(outputs.keys())
for name, idx in output_names.items():
ct.utils.rename_feature(spec, name, org_output_names[idx])
mlmodel_decoder_fix = ct.models.MLModel(spec, weights_dir=mlmodel_decoder.weights_dir)
mlmodel_decoder_fix.save("CodeDecoder.mlpackage")
return last
def calc_predid(*args):
m = net.modulo_list
b = args
assert(len(m) == len(b))
t = []
for k in range(len(m)):
u = 0
for j in range(k):
w = t[j]
for i in range(j):
w *= m[i]
u += w
tk = b[k] - u
for j in range(k):
tk *= pow(m[j], -1, m[k])
tk = tk % m[k]
t.append(tk)
x = 0
for k in range(len(t)):
w = t[k]
for i in range(k):
w *= m[i]
x += w
mk = 1
for k in range(len(m)):
mk *= m[k]
x = x % mk
return x
def cos_sim(v1, v2):
return np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))
def test_model():
plt.figure()
plt.text(0.1,0.9,'test', fontsize=32)
plt.axis('off')
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
im = np.array(Image.open(buf).convert("RGB"))
buf.close()
im = im[:net.height,:net.width,:]
im = np.pad(im, [[0,net.height-im.shape[0]], [0,net.width-im.shape[1]], [0,0]], 'constant', constant_values=((255,255),(255,255),(255,255)))
print('test')
input_image = Image.fromarray(im, mode="RGB")
print('load')
mlmodel_detector = ct.models.MLModel('TextDetector.mlpackage')
mlmodel_decoder = ct.models.MLModel('CodeDecoder.mlpackage')
output = mlmodel_detector.predict({'Image': input_image})
peakmap = output['Output_heatmap'][0,:,:,1]
idxy, idxx = np.unravel_index(np.argsort(-peakmap.ravel()), peakmap.shape)
results_dict = []
for y, x in zip(idxy, idxx):
print(x,y,peakmap[y,x])
if peakmap[y,x] < 0.5:
break
decode_output = mlmodel_decoder.predict({'Input': output['Output_feature'][:,y,x,:]})
p = decode_output['Output_p'][0]
ids = list(decode_output['Output_id'][0].astype(int))
i = calc_predid(*ids)
if i < 0x10FFFF:
c = chr(i)
else:
c = None
print(p, i, c)
feature = output['Output_feature'][0,y,x,:]
print(feature.max(), feature.min())
results_dict.append((feature, i, c))
print()
for i in range(len(results_dict)):
for j in range(i+1, len(results_dict)):
s = cos_sim(results_dict[i][0], results_dict[j][0])
d = np.linalg.norm(results_dict[i][0] - results_dict[j][0])
print(s,d, i,j,results_dict[i][1:],results_dict[j][1:])
if __name__ == '__main__':
import sys
if len(sys.argv) > 1:
ckpt_dir = int(sys.argv[1])
else:
ckpt_dir = 'ckpt1'
convert1(ckpt_dir)
test_model()