A folder that holds the subfolders and files that an AIDesign-GAN model needs.
Texts.
This file itself.
Texts.
Coordinators configuration.
Configuration items. Type dict[str, typing.Union[dict, list, str, bool, int, float, None]]
.
Configuration item descriptions are listed below.
training
. Training coordinator configuration. Typedict
.mode
. Training mode. Typestr
. Values"new", "resume"
.algorithm
. Training algorithm. Typestr
. Values"alt_sgd_algo", "pred_alt_sgd_algo", "fair_pred_alt_sgd_algo"
.manual_seed
. Manual random seed. Typetyping.Union[None, int]
.gpu_count
. Typeint
. Range [0, ).iter_count
. Iteration count. Each iteration contains multiple epochs. Typeint
. Range [0, ). Compatibility aliasiteration_count
. Precedenceiter_count
>iteration_count
.epochs_per_iter
. Epochs per iteration. Each epoch contains one complete pass of the training and validation datasets to use. Typeint
. Range [0, ). Compatibility aliasepochs_per_iteration
. Precedenceepochs_per_iter
>epochs_per_iteration
.max_rollbacks
. Maximum rollbacks. Typeint
. Range [0, ).max_early_stops
. Maximum early stops. Typeint
. Range [0, ).datasets
. Datasets configuration. Typedict
.loader_worker_count
. Typeint
. Range [0, ).percents_to_use
. Percentage of dataset to use for training. Typefloat
. Range [0, 100].images_per_batch
. Typeint
. Range [1, ).image_resolution
. The resolution in pixels to resize the images used for training. Typeint
. Range [1, ).image_channel_count
. Typeint
. Range [1, ).training_set_weight
. Typefloat
. Range [0, ].validation_set_weight
. Typefloat
. Range [0, ].
labels
. Labels configuration. Typedict
.real
. The number used to label each real image from the real world. Typefloat
. Range [0, 1].fake
. The number used to label each fake image from the generator. Typefloat
. Range [0, 1].
noise_models
. Model noising configuration. Typedict
.before_each_iter
. Whether to inject noises into the model parameters before each iteration. Typebool
.before_each_epoch
. Whether to inject noises into the model parameters before each epoch. Typebool
.save_noised_images
. Whether to save the generated images after model noising. Typebool
.
epoch_collapses
. Epoch training collapse detection configurations. Typedict
.max_loss
: Maximum loss allowed for a training batch to be marked as not collapsed. If the loss exceedsmax_loss
, the training batch will be marked as collapsed. Typefloat
. Range [0, 100].percents_of_batches
. Maximum percentage of collapsed training batches allowed to mark an epoch as not collapsed. Typefloat
. Range [0, 100].
retrirals
. Epoch training exception retrials configurations. Typedict
.max_count
. Maximum retrial count. Typeint
. Range [0, ].delay_seconds
. Delay in seconds, before starting a retrial. Typefloat
. Range [0, ].
generation
. Generation coordinator configuration. Typedict
.manual_seed
. Manual random seed. Typetyping.Union[None, int]
.gpu_count
. Typeint
. Range [0, ).image_count
. Typeint
. Range [0, ).images_per_batch
. Typeint
. Range [1, ).grid_mode
. Grid generation mode configuration. Typedict
.enabled
. Whether to enable the grid mode. Typebool
.images_per_grid
. Typeint
. Range [1, ).padding
. Grid padding. Typeint
. Range [0, ).
exportation
. Exportation coordinator configuration. Typedict
.manual_seed
. Manual random seed. Typetyping.Union[None, int]
.gpu_count
. Typeint
. Range [0, ).images_per_batch
. Typeint
. Range [1, ).preview_grids
. Preview grids configuration. Typedict
.images_per_grid
. Typeint
. Range [1, ).padding
. Grid padding. Typeint
. Range [0, ).
Discriminator structure.
Python code fragment. Uses information from the loaded modeler configuration at self.config
to setup the targeted model structure at self.model
.
self.config
. Loaded modeler configuration. Type dict
.
self.model
. Targeted model structure to setup. type torch.nn.Module
.
Warning: Code in this file can possibly make gan train
execute malicious code from this file itself and somewhere else. Please be careful.
Format configuration.
Automatically configured. Not supposed to be edited manually. Serves as a model folder format reference.
Configuration items. Type dict[str, typing.Union[dict, list, str, bool, int, float, None]]
.
Configuration item descriptions are listed below.
aidesign_gan_version
. Typestr
.aidesign_gan_repo_tag
. Typestr
.
Generator structure.
Python code fragment. Uses information from the loaded modeler configuration at self.config
to setup the targeted model structure at self.model
.
self.config
. Loaded modeler configuration. Type dict
.
self.model
. Targeted model structure to setup. type torch.nn.Module
.
Warning: Code in this file can possibly make gan train
, gan generate
, and gan export ...
execute malicious code from this file itself and somewhere else. Please be careful.
Modelers configuration.
Configuration items. Type dict[str, typing.Union[dict, list, str, bool, int, float, None]]
.
Configuration item descriptions are listed below.
discriminator
. Discriminator modeler only configurations. Typedict
.image_resolution
. Input image resolution in pixels. Typeint
. Range [1, ).image_channel_count
. Input image channel count. Typeint
. Range [1, ).label_resolution
. Output label resolution in pixels. Typeint
. Range [1, ).label_channel_count
. Output label channel count. Typeint
. Range [1, ).feature_map_count
. Layer 0 (first layer) output feature map count. Typeint
. Range [1, ). Compatibility aliasfeature_map_size
. Precedencefeature_map_count
>feature_map_size
.
generator
. Generator modeler only configurations. Typedict
.noise_resolution
. Input noise resolution in pixels. Typeint
. Range [1, ).noise_channel_count
. Input noise channel count. Typeint
. Range [1, ).image_resolution
. Output image resolution in pixels. Typeint
. Range [1, ).image_channel_count
. Output image channel count. Typeint
. Range [1, ).feature_map_count
. Layer -1 (last layer) input feature map count. Typeint
. Range [1, ). Compatibility aliasfeature_map_size
. Precedencefeature_map_count
>feature_map_size
.
discriminator
orgenerator
. Discriminator and generator modelers common configurations. Typedict
.struct_name
. Structure name. Typestr
.state_name
. Model state name. Typestr
.optim_name
. Optimizer state name. Typestr
.adam_optimizer
. Adam optimizer configuration. Typedict
.learning_rate
. Typefloat
. Range [0, ).beta1
. Momentum beta-1. Typefloat
. Range [0, 1].beta2
. Momentum beta-2. Typefloat
. Range [0, 1].pred_factor
. Prediction factor. Typefloat
.
params_init
. Parameters initialization configuration. Typedict
.conv
. Convolution layers configuration. Typedict
.weight_mean
. Typefloat
.weight_std
. Weight standard deviation. Typefloat
. Range [0, ).
batch_norm
. Batch normalization layers configuration. Typedict
.weight_mean
. Typefloat
.weight_std
. Weight standard deviation. Typefloat
. Range [0, ).bias_mean
. Typefloat
.bias_std
. Bias standard deviation. Typefloat
. Range [0, ).
params_noising
. Parameters noising configuration. Typedict
.conv
. Convolution layers configuration. Typedict
.delta_weight_mean
. Weight incrementation mean. Typefloat
.delta_weight_std
. Weight incrementation standard deviation. Typefloat
. Range [0, ).
batch_norm
. Batch normalization layers configuration. Typedict
.delta_weight_mean
. Weight incrementation mean. Typefloat
.delta_weight_std
. Weight incrementation standard deviation. Typefloat
. Range [0, ).delta_bias_mean
. Bias incrementation mean. Typefloat
.delta_bias_std
. Bias incrementation standard deviation. Typefloat
. Range [0, ).
fairness
. Fair loss factor configuration. Typedict
.dx_factor
. D(X) factor. Typefloat
.dgz_factor
. D(G(Z)) factor. Typefloat
.cluster_dx_factor
. Cluster D(X) factor. Typefloat
.cluster_dgz_factor
. Cluster D(G(Z)) factor. Typefloat
.cluster_dx_overact_slope
. Cluster D(X) overact slope. Typefloat
.cluster_dgz_overact_slope
. Cluster D(G(Z)) overact slope. Typefloat
.
Folders, texts, and images.
Note: Not present and ready until an AIDesign-GAN generation session completes.
Generation results.
Note: Not present and ready until an AIDesign-GAN training session completes.
Training results.
Note: Not present and ready until an AIDesign-GAN training, generation, or exportation session completes.
Log.
Binaries.
Note: Not present and ready until an AIDesign-GAN training session completes.
Discriminator optimizer.
Note: Not present and ready until an AIDesign-GAN training session completes.
Discriminator state.
Note: Not present and ready until an AIDesign-GAN training session completes.
Generator optimizer.
Note: Not present and ready until an AIDesign-GAN training session completes.
Generator state.