forked from bubbliiiing/srgan-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsrgan.py
79 lines (68 loc) · 3.4 KB
/
srgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from PIL import Image
from nets.srgan import Generator
from utils.utils import cvtColor, preprocess_input, postprocess_output
class SRGAN(object):
#-----------------------------------------#
# 注意修改model_path
#-----------------------------------------#
_defaults = {
#-----------------------------------------------#
# model_path指向logs文件夹下的权值文件
#-----------------------------------------------#
"model_path" : 'model_data/Generator_SRGAN.pth',
#-----------------------------------------------#
# 上采样的倍数,和训练时一样
#-----------------------------------------------#
"scale_factor" : 4,
#-------------------------------#
# 是否使用Cuda
# 没有GPU可以设置成False
#-------------------------------#
"cuda" : True,
}
#---------------------------------------------------#
# 初始化SRGAN
#---------------------------------------------------#
def __init__(self, **kwargs):
self.__dict__.update(self._defaults)
for name, value in kwargs.items():
setattr(self, name, value)
self.generate()
def generate(self):
self.net = Generator(self.scale_factor)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.net.load_state_dict(torch.load(self.model_path, map_location=device))
self.net = self.net.eval()
print('{} model, and classes loaded.'.format(self.model_path))
if self.cuda:
self.net = torch.nn.DataParallel(self.net)
cudnn.benchmark = True
self.net = self.net.cuda()
def detect_image(self, image):
#---------------------------------------------------------#
# 在这里将图像转换成RGB图像,防止灰度图在预测时报错。
# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
#---------------------------------------------------------#
image = cvtColor(image)
#---------------------------------------------------------#
# 添加上batch_size维度,并进行归一化
#---------------------------------------------------------#
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image, dtype='float32')), [2, 0, 1]), 0)
with torch.no_grad():
image_data = torch.from_numpy(image_data).type(torch.FloatTensor)
if self.cuda:
image_data = image_data.cuda()
#---------------------------------------------------------#
# 将图像输入网络当中进行预测!
#---------------------------------------------------------#
hr_image = self.net(image_data)[0]
#---------------------------------------------------------#
# 将归一化的结果再转成rgb格式
#---------------------------------------------------------#
hr_image = hr_image.cpu().data.numpy().transpose(1, 2, 0)
hr_image = postprocess_output(hr_image)
hr_image = Image.fromarray(np.uint8(hr_image))
return hr_image