-
Notifications
You must be signed in to change notification settings - Fork 191
/
test_city.py
75 lines (69 loc) · 2.44 KB
/
test_city.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from __future__ import division
import os
import time
import cPickle
from keras.layers import Input
from keras.models import Model
from keras_csp import config, bbox_process
from keras_csp.utilsfunc import *
os.environ["CUDA_VISIBLE_DEVICES"] = '1'
C = config.Config()
C.offset = True
cache_path = 'data/cache/cityperson/val_500'
with open(cache_path, 'rb') as fid:
val_data = cPickle.load(fid)
num_imgs = len(val_data)
print 'num of val samples: {}'.format(num_imgs)
C.size_test = (1024, 2048)
input_shape_img = (C.size_test[0], C.size_test[1], 3)
img_input = Input(shape=input_shape_img)
# define the base network (resnet here, can be MobileNet, etc)
if C.network=='resnet50':
from keras_csp import resnet50 as nn
elif C.network=='mobilenet':
from keras_csp import mobilenet as nn
else:
raise NotImplementedError('Not support network: {}'.format(C.network))
# define the network prediction
preds = nn.nn_p3p4p5(img_input, offset=C.offset, num_scale=C.num_scale, trainable=True)
model = Model(img_input, preds)
if C.offset:
w_path = 'output/valmodels/city/%s/off' % (C.scale)
out_path = 'output/valresults/city/%s/off' % (C.scale)
else:
w_path = 'output/valmodels/city/%s/nooff' % (C.scale)
out_path = 'output/valresults/city/%s/nooff' % (C.scale)
if not os.path.exists(out_path):
os.makedirs(out_path)
files = sorted(os.listdir(w_path))
# get the results from epoch 51 to epoch 150
for w_ind in range(51,151):
for f in files:
if f.split('_')[0] == 'net' and int(f.split('_')[1][1:]) == w_ind:
cur_file = f
break
weight1 = os.path.join(w_path, cur_file)
print 'load weights from {}'.format(weight1)
model.load_weights(weight1, by_name=True)
res_path = os.path.join(out_path, '%03d'%int(str(w_ind)))
if not os.path.exists(res_path):
os.makedirs(res_path)
print res_path
res_file = os.path.join(res_path, 'val_det.txt')
res_all = []
start_time = time.time()
for f in range(num_imgs):
filepath = val_data[f]['filepath']
img = cv2.imread(filepath)
x_rcnn = format_img(img, C)
Y = model.predict(x_rcnn)
if C.offset:
boxes = bbox_process.parse_det_offset(Y, C, score=0.1,down=4)
else:
boxes = bbox_process.parse_det(Y, C, score=0.1, down=4, scale=C.scale)
if len(boxes)>0:
f_res = np.repeat(f+1, len(boxes), axis=0).reshape((-1, 1))
boxes[:, [2, 3]] -= boxes[:, [0, 1]]
res_all += np.concatenate((f_res, boxes), axis=-1).tolist()
np.savetxt(res_file, np.array(res_all), fmt='%6f')
print time.time() - start_time