-
Notifications
You must be signed in to change notification settings - Fork 0
/
dnn_mlp.py
220 lines (172 loc) · 7.41 KB
/
dnn_mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
Do not change the input and output format.
If our script cannot run your code or the format is improper, your code will not be graded.
"""
import json
import numpy as np
import sys
import dnn_misc
import os
import argparse
def data_loader_mnist(dataset):
# This function reads the MNIST data and separate it into train, val, and test set
with open(dataset, 'r') as f:
data_set = json.load(f)
train_set, valid_set, test_set = data_set['train'], data_set['valid'], data_set['test']
Xtrain = train_set[0]
Ytrain = train_set[1]
Xvalid = valid_set[0]
Yvalid = valid_set[1]
Xtest = test_set[0]
Ytest = test_set[1]
return np.array(Xtrain), np.array(Ytrain), np.array(Xvalid),\
np.array(Yvalid), np.array(Xtest), np.array(Ytest)
def predict_label(f):
# This is a function to determine the predicted label given scores
if f.shape[1] == 1:
return (f > 0).astype(float)
else:
return np.argmax(f, axis=1).astype(float).reshape((f.shape[0], -1))
class DataSplit:
def __init__(self, X, Y):
self.X = X
self.Y = Y
self.N, self.d = self.X.shape
def get_example(self, idx):
batchX = np.zeros((len(idx), self.d))
batchY = np.zeros((len(idx), 1))
for i in range(len(idx)):
batchX[i] = self.X[idx[i]]
batchY[i, :] = self.Y[idx[i]]
return batchX, batchY
def main(main_params):
### set the random seed ###
np.random.seed(int(main_params['random_seed']))
### data processing ###
Xtrain, Ytrain, Xval, Yval , _, _ = data_loader_mnist(dataset = 'mnist_subset.json')
N_train, d = Xtrain.shape
N_val, _ = Xval.shape
trainSet = DataSplit(Xtrain, Ytrain)
valSet = DataSplit(Xval, Yval)
### building/defining MLP ###
"""
In this script, we are going to build an MLP for a 10-class classification problem on MNIST.
The network structure is input --> linear --> relu --> dropout --> linear --> softmax_cross_entropy loss
the hidden_layer size (num_L1) is 1000
the output_layer size (num_L2) is 10
"""
model = dict()
num_L1 = 1000
num_L2 = 10
# experimental setup
num_epoch = int(main_params['num_epoch'])
minibatch_size = int(main_params['minibatch_size'])
# optimization setting: _alpha for momentum, _lambda for weight decay
_learning_rate = float(main_params['learning_rate'])
_step = 10
_alpha = float(main_params['alpha'])
_lambda = float(main_params['lambda'])
_dropout_rate = float(main_params['dropout_rate'])
# create objects (modules) from the module classes
model['L1'] = dnn_misc.linear_layer(input_D = d, output_D = num_L1)
model['nonlinear1'] = dnn_misc.relu()
model['drop1'] = dnn_misc.dropout(r = _dropout_rate)
model['L2'] = dnn_misc.linear_layer(input_D = num_L1, output_D = num_L2)
model['loss'] = dnn_misc.softmax_cross_entropy()
# create variables for momentum
if _alpha > 0.0:
momentum = dnn_misc.add_momentum(model)
else:
momentum = None
train_acc_record = []
val_acc_record = []
### run training and validation ###
for t in range(num_epoch):
print('At epoch ' + str(t + 1))
if (t % _step == 0) and (t != 0):
_learning_rate = _learning_rate * 0.1
idx_order = np.random.permutation(N_train)
train_acc = 0.0
train_loss = 0.0
train_count = 0
val_acc = 0.0
val_count = 0
for i in range(int(np.floor(N_train / minibatch_size))):
# get a mini-batch of data
x, y = trainSet.get_example(idx_order[i * minibatch_size : (i + 1) * minibatch_size])
### forward ###
a1 = model['L1'].forward(x)
h1 = model['nonlinear1'].forward(a1)
d1 = model['drop1'].forward(h1, is_train = True)
a2 = model['L2'].forward(d1)
loss = model['loss'].forward(a2, y)
### backward ###
grad_a2 = model['loss'].backward(a2, y)
grad_d1 = model['L2'].backward(d1, grad_a2)
grad_h1 = model['drop1'].backward(h1, grad_d1)
grad_a1 = model['nonlinear1'].backward(a1, grad_h1)
grad_x = model['L1'].backward(x, grad_a1)
### gradient_update ###
for module_name, module in model.items():
# check if a module has learnable parameters
if hasattr(module, 'params'):
for key, _ in module.params.items():
g = module.gradient[key] + _lambda * module.params[key]
if _alpha > 0.0:
momentum[module_name + '_' + key] = _alpha * momentum[module_name + '_' + key] - _learning_rate * g
module.params[key] += momentum[module_name + '_' + key]
else:
module.params[key] -= _learning_rate * g
### Computing training accuracy and obj ###
for i in range(int(np.floor(N_train / minibatch_size))):
x, y = trainSet.get_example(np.arange(i * minibatch_size, (i + 1) * minibatch_size))
### forward ###
a1 = model['L1'].forward(x)
h1 = model['nonlinear1'].forward(a1)
d1 = model['drop1'].forward(h1, is_train = False)
a2 = model['L2'].forward(d1)
loss = model['loss'].forward(a2, y)
train_loss += len(y) * loss
train_acc += np.sum(predict_label(a2) == y)
train_count += len(y)
train_loss = train_loss / train_count
train_acc = train_acc / train_count
train_acc_record.append(train_acc)
print('Training loss at epoch ' + str(t + 1) + ' is ' + str(train_loss))
print('Training accuracy at epoch ' + str(t + 1) + ' is ' + str(train_acc))
### Computing validation accuracy ###
for i in range(int(np.floor(N_val / minibatch_size))):
x, y = valSet.get_example(np.arange(i * minibatch_size, (i + 1) * minibatch_size))
### forward ###
a1 = model['L1'].forward(x)
h1 = model['nonlinear1'].forward(a1)
d1 = model['drop1'].forward(h1, is_train = False)
a2 = model['L2'].forward(d1)
val_acc += np.sum(predict_label(a2) == y)
val_count += len(y)
val_acc = val_acc / val_count
val_acc_record.append(val_acc)
print('Validation accuracy at epoch ' + str(t + 1) + ' is ' + str(val_acc))
# save file
json.dump({'train': train_acc_record, 'val': val_acc_record},
open('MLP_lr' + str(main_params['learning_rate']) +
'_m' + str(main_params['alpha']) +
'_w' + str(main_params['lambda']) +
'_d' + str(main_params['dropout_rate']) +
'.json', 'w'))
print('Finish running!')
return
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--random_seed', default=2)
parser.add_argument('--learning_rate', default=0.01)
parser.add_argument('--alpha', default=0.0)
parser.add_argument('--lambda', default=0.0)
parser.add_argument('--dropout_rate', default=0.0)
parser.add_argument('--num_epoch', default=30)
parser.add_argument('--minibatch_size', default=5)
args = parser.parse_args()
main_params = vars(args)
# print ('parsed input parameters:')
# print (json.dumps(main_params, indent = 2))
main(main_params)