-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathtrainer.py
176 lines (133 loc) · 5.77 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import shutil
import os.path as osp
import time
import torch
import torch.nn as nn
from torch.autograd import Variable
from net import ReconNet
from utils import AverageMeter
class Trainer_ReconNet(nn.Module):
def __init__(self, args):
super(Trainer_ReconNet, self).__init__()
self.exp_name = args.exp
self.arch = args.arch
self.print_freq = args.print_freq
self.output_path = args.output_path
self.resume = args.resume
self.best_loss = 1e5
# create model
print("=> Creating model...")
if self.arch == 'ReconNet':
self.model = ReconNet(in_channels=args.num_views, out_channels=args.output_channel, gain=args.init_gain, init_type=args.init_type)
self.model = nn.DataParallel(self.model).cuda()
else:
assert False, print('Not implemented model: {}'.format(self.arch))
# define loss function
if args.loss == 'l1':
# L1 loss
self.criterion = nn.L1Loss(size_average=True, reduce=True).cuda()
elif args.loss == 'l2':
# L2 loss (mean-square-error)
self.criterion = nn.MSELoss(size_average=True, reduce=True).cuda()
else:
assert False, print('Not implemented loss: {}'.format(args.loss))
# define optimizer
if args.optim == 'adam':
self.optimizer = torch.optim.Adam(self.model.parameters(),
lr=args.lr,
betas=(0.5, 0.999),
weight_decay=args.weight_decay,
)
else:
assert False, print('Not implemented optimizer: {}'.format(args.optim))
def train_epoch(self, train_loader, epoch):
train_loss = AverageMeter()
# train mode
self.model.train()
for i, (input, target) in enumerate(train_loader):
input_var, target_var = Variable(input), Variable(target)
input_var = input_var.cuda()
target_var = target_var.cuda()
# compute output
output = self.model(input_var)
# compute loss
loss = self.criterion(output, target_var)
train_loss.update(loss.data.item(), input.size(0))
# compute gradient and do SGD step
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# display info
if i % self.print_freq == 0:
print('Epoch: [{0}] \t'
'Iter: [{1}/{2}]\t'
'Train Loss: {loss.val:.5f} ({loss.avg:.5f})\t'.format(
epoch, i, len(train_loader),
loss=train_loss))
# finish current epoch
print('Finish Epoch: [{0}]\t'
'Average Train Loss: {loss.avg:.5f}\t'.format(
epoch, loss=train_loss))
return train_loss.avg
def validate(self, val_loader):
val_loss = AverageMeter()
batch_time = AverageMeter()
# evaluation mode
self.model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
input_var, target_var = Variable(input), Variable(target)
input_var = input_var.cuda()
target_var = target_var.cuda()
# compute output
output = self.model(input_var)
# compute loss
loss = self.criterion(output, target_var)
val_loss.update(loss.data.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time()-end)
end = time.time()
# if i % args.print_freq == 0:
print('Val: [{0}/{1}]\t'
'Time {batch_time.val: .3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.5f} ({loss.avg:.5f})\t'.format(
i, len(val_loader),
batch_time=batch_time,
loss=val_loss))
return val_loss.avg
def save(self, curr_val_loss, epoch):
# update best loss and save checkpoint
is_best = curr_val_loss < self.best_loss
self.best_loss = min(curr_val_loss, self.best_loss)
state = {'epoch': epoch + 1,
'arch': self.arch,
'state_dict': self.model.state_dict(),
'best_loss': self.best_loss,
'optimizer': self.optimizer.state_dict(),
}
filename = osp.join(self.output_path, 'curr_model.pth.tar')
best_filename = osp.join(self.output_path, 'best_model.pth.tar')
print('! Saving checkpoint: {}'.format(filename))
torch.save(state, filename)
if is_best:
print('!! Saving best checkpoint: {}'.format(best_filename))
shutil.copyfile(filename, best_filename)
def load(self):
if self.resume == 'best':
ckpt_file = osp.join(self.output_path, 'best_model.pth.tar')
elif self.resume == 'final':
ckpt_file = osp.join(self.output_path, 'curr_model.pth.tar')
else:
assert False, print("=> no available checkpoint '{}'".format(ckpt_file))
if osp.isfile(ckpt_file):
print("=> loading checkpoint '{}'".format(ckpt_file))
checkpoint = torch.load(ckpt_file)
start_epoch = checkpoint['epoch']
self.best_loss = checkpoint['best_loss']
self.model.load_state_dict(checkpoint['state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(ckpt_file, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(ckpt_file))
return start_epoch