-
Notifications
You must be signed in to change notification settings - Fork 1
/
Fig_1.nb
2853 lines (2826 loc) · 138 KB
/
Fig_1.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 138290, 2845]
NotebookOptionsPosition[ 136186, 2806]
NotebookOutlinePosition[ 136564, 2822]
CellTagsIndexPosition[ 136521, 2819]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData["Quit"], "Input",
CellChangeTimes->{{3.841136145475167*^9,
3.8411361460698295`*^9}},ExpressionUUID->"a8feb49c-08fe-48ee-a520-\
f74ab98ac5ef"],
Cell[BoxData[
RowBox[{"(*", " ",
RowBox[{"Created", " ", "by", " ", "Savvas", " ", "Nesseris", " ", "2021"}],
" ", "*)"}]], "Input",
CellChangeTimes->{{3.842757346173691*^9,
3.8427573548529177`*^9}},ExpressionUUID->"25a1e00a-376e-48a6-9385-\
273dfa1b561f"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"A", " ", "smooth", " ", "model", " ", "for", " ", "transitions", " ",
"of", " ", "the", " ", "equation", " ", "of", " ", "state", " ", "w",
RowBox[{"(", "z", ")"}]}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"wint", "[", "a_", "]"}], ":=",
RowBox[{"\[Alpha]", "+",
RowBox[{"\[Beta]",
FractionBox["1", "2"],
RowBox[{"(",
RowBox[{"1", "+",
FractionBox[
FractionBox[
RowBox[{"a", "-", "at"}], "da"],
SqrtBox[
RowBox[{"1", "+",
RowBox[{
RowBox[{"(",
FractionBox[
RowBox[{"a", "-", "at"}], "da"], ")"}], "^", "2"}]}]]]}],
")"}]}]}]}], ";"}]}]], "Input",
CellChangeTimes->{{3.84275731783464*^9,
3.8427573378317614`*^9}},ExpressionUUID->"1258b5f3-d8bb-4fb3-9d25-\
8136ae94b687"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Match", " ", "params", " ", "for", " ", "sqrt", " ", "model", " ", "so",
" ", "that", " ", "the", " ", "transition", " ", "happens", " ", "at",
" ", "a", " ", "specified", " ", "redshift", " ", "etc"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"sol1", "=",
RowBox[{"{",
RowBox[{
RowBox[{"\[Alpha]", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{"da", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+", "at"}],
RowBox[{
SqrtBox[
RowBox[{"1", "+",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "at"}], ")"}], "2"],
SuperscriptBox["da", "2"]]}]], " ", "da"}]], "+",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["at",
RowBox[{
SqrtBox[
RowBox[{"1", "+",
FractionBox[
SuperscriptBox["at", "2"],
SuperscriptBox["da", "2"]]}]], " ", "da"}]]}], ")"}], " ",
RowBox[{"(",
RowBox[{"1", "-", "\[CapitalDelta]w"}], ")"}]}]}], ")"}]}],
RowBox[{
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+", "at"}],
SqrtBox[
RowBox[{"1", "+",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "at"}], ")"}], "2"],
SuperscriptBox["da", "2"]]}]]], "-",
FractionBox["at",
SqrtBox[
RowBox[{"1", "+",
FractionBox[
SuperscriptBox["at", "2"],
SuperscriptBox["da", "2"]]}]]]}]]}]}], ",",
RowBox[{"\[Beta]", "\[Rule]",
FractionBox[
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "at"}], ")"}], "2"],
SuperscriptBox["da", "2"]]}]], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox[
SuperscriptBox["at", "2"],
SuperscriptBox["da", "2"]]}]], " ", "da", " ",
"\[CapitalDelta]w"}],
RowBox[{
RowBox[{"at", " ",
RowBox[{"(",
RowBox[{
SqrtBox[
RowBox[{"1", "+",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "at"}], ")"}], "2"],
SuperscriptBox["da", "2"]]}]], "-",
SqrtBox[
RowBox[{"1", "+",
FractionBox[
SuperscriptBox["at", "2"],
SuperscriptBox["da", "2"]]}]]}], ")"}]}], "+",
SqrtBox[
RowBox[{"1", "+",
FractionBox[
SuperscriptBox["at", "2"],
SuperscriptBox["da", "2"]]}]]}]]}]}], "}"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"wDE", "=",
RowBox[{
RowBox[{"wint", "[", "a", "]"}], "/.", "sol1"}]}], ";"}]}]}]], "Input",
CellChangeTimes->{{3.841135385556076*^9, 3.8411353883018475`*^9}, {
3.842757375404255*^9,
3.8427573992205496`*^9}},ExpressionUUID->"9a7f1a31-445b-4ff8-894b-\
f749d72c17a7"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Example", " ", "plot"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"wDE", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"da", "\[Rule]", "0.01"}], ",",
RowBox[{"\[CapitalDelta]w", "\[Rule]", "0.1"}], ",",
RowBox[{"at", "\[Rule]",
FractionBox["1",
RowBox[{"1", "+", "0.2"}]]}]}], "}"}]}], "/.",
RowBox[{"a", "\[Rule]",
FractionBox["1",
RowBox[{"1", "+", "z"}]]}]}], "//", "Evaluate"}], ",",
RowBox[{"{",
RowBox[{"z", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<z\>\"", ",", "\"\<w(z)\>\""}], "}"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<\[CapitalTheta]\>\"", ",", "\"\<Sqrt\>\""}], "}"}]}], ",",
RowBox[{"FrameStyle", "\[Rule]", "Black"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.841135847711413*^9, 3.8411358778311663`*^9}, {
3.84275740264429*^9,
3.842757407513219*^9}},ExpressionUUID->"57636612-4da4-475d-8f29-\
3a5dd3e28682"],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwV1nc4Vl8cAHCKX5LslLSoqMxSSPhaISMjEkWFKBJJIcmWGUVF2UohM3sd
e7/23nvU+7opVBS/8/51n8/znHPu+Y577uE1s9O7tYWGhmaOloaG+lS/Nd9R
sWAgN9je1tLSQkZ0Snvtx7hPQ2Ol2lMStnhcZPQXbmXQfBsv1oqtQerLieHW
h/xPP960YRta/Cp7yW0B87fV7ndij4g+UwrhdoQOb3qdfuz4Xdp+gdw+0FlT
2TCN7Up6U3O52Ae4gnZGzWBf9h3fcviqL2Qb21jPYjOt3HcvifaDVzcsWOex
nbsjnMkHA6Bzwf3ON2zd8EHri/zP4R3Xdr0f2J4MXwQCuCPAUjGJkZZERidU
X/jn2EcAzcG2XVuwO33tFobqI4BiEMS3FfvIVqE0kUev4MDfCnl67Lp/70W6
O1/D8TmnsO3YTD9fnzkYHAWP+afc2bEjRx4r5W3EAvud7vyj2Ar7jN6PGsTB
+gXfNX7sr8aS9AzpcVB3R1L+GPYBsot5unA8nFvM7DiBbXdH4ijNcDw85bq9
Uwyb3SLz0wepRKiwb/wmjX3FKCHz+9J7WGu3uKWHTQzpMybu/QDi24v7LmH7
mTLcuqT0AX46G2gaYH8xt9ubH/EBXsTdl7mCzXxP1tdVMhmk/6uRMsWu9Row
/s/tI0TG8SZbY5/6zPbfPoZUeOXyz9kXu1Gk9gZJLBX45NnlnmHfyHYueWqU
Ci0xPP8FYIfkj9lPpKaCz/jRuGDs+Yr0oWStNNj80L4Sjh3bcyH7ZPhnMGF5
ci4Je8em5zXVA5lQ5bL/Wg01X3cMTYVUMuHsxSivOmq+u4VusN3LhJJbvZ8b
sOVS+syHyjLB90M+Ewm7KOV1XoFIFgzn0q33YFMukUs1WrNAeUdP1Dz26e19
snKTWfAkI4bmG/bj8spysdUs+HOl1IaCve34m4pdB7KhofiI9g9s3g2FmjHb
bHBnrtf4i23w6U3zg505cNNm+ihbKxlFm3hpWvLmQPpRnj4O7El2W9KVMzkg
LW4cwoVt56bYJmuSA05BfNv3YQfoUTq3pedAhbIsCGCX/VUcfKf5Be40HcmW
wz6quzhfHZQLsVemWB2w97qrSlsl5EI5R1HDQ2zW9PggxoJcMDmU7u+CvcZw
SUR3MhfeimvxemK3VxQ8GJXKA/lkxsIw7Mdinhu/Z/LA8L7fi2zqfkwHtaPX
8+AHaag3D9siWDwB2PLBbPrb0WJs7fkZJT+ZfDj5MWuiCvtIvHoAR3g+3JPi
6OrGbmXh5BSRL4CXhuTCNexqWdtbHQYFwCnq9mkTu9CmLt/RpgCuKbQl0bWR
UVK9s1HJ6wJgOqdezozt7D4Sq0YpAGn2Sr/D2HxE8nHzt4Vww7XbXxvbqfUs
RC4XQRLXYEgONrNI3kwjQzE0pRj1FGK/DxELXt9XDK6jJ4UQdoemwIDp+WIo
e5rN0IIt2Mz54OjrYrin+9RrFnusnkjOkSyBMGb/TwfayeiRgI3WtEYJfDlz
Y+MoNtOz2Z+7bpTAicPbrISxz6qMyLv4l8DiCXRfBju8pmkQBkpA6O1Wx6vY
qpUfmEmPS8GRe+Z2DPboId68jeelwPsya0cytqNH9FWxpFKoD6mtzcBOgPBP
4c2l4F3H5VmBvV7moWi8rwyMSdn7Z7Azi68+misrA4WqLDnxDjJS2du3j7uz
DMY4f7vLYg+76FWrz5bBrvjbo6rY289eYM1gLodZ5cfL17DNCyRSHa+XQ65y
1Qt/7N25bKO0tAiEq+nXZ7CvBa/rT3MhYAlM1P6JnWgx01wnhED/R3EbTScZ
Ce0qKgq6guBFurrBPmzFRzde7cpCIPNXIsgAWyLaMDlCtALc5zuNO7CN/Fsm
fKUrYMDSp34C+4mjwn6n8xUQUmxs+wO7UlMwwuhqBUgFPL/N2UVGmv82PA88
q4A9o9vPXcW+aZps8mm0AlKVDxisYPuo80RFLVTAqyiW4e3dZJQsEdYduFwB
ch0emQewycyPNWwZK6HGtUrhAvYjpHX2lEQl+KoOySViR6VVOR5WqISPMqn6
RdilbySzODUrYXdZWnU7Nq09r8Cvm5XwKfV6Lk0PGQUfWuEsDamEVZpCzlvY
GUzWOumReP3MTQF37I7fo0GxSZVwYWIkKQqbq6Nhi2dRJSgL0I62YSd4Rn8/
P1MJZhfd3in0klH+pFJLm0wVBG38sJHpI6NeNc+lENUqyJQkgk2wVzPKuTT1
qoD0cvs5d2xJ17M3G6yqoNFtRb0Gu5BDdLXiZRXkX1qOMOgno36XuzzuMVUw
6Jbo4or9eyxFXvZTFRxKcPgvEVvq85GgorIq8LhPEljCLlLeeyhnvgqGbUfX
3gyQ0WCq4Xn7n1UQK2vyohp7jfWVtchGFXRfjl4isKVHWPJSOaphRfgZn8Yg
GRU/pFdPksMWl+neMYTzl/z9QURENYw8P32vZBj3H5NIlF5cNSxwSZ5axf7r
YFPOmloNB0XjD54aISNZmGUIQdWQ1uL4Kh27vG8oxvdrNVx1L+38Moq/D1nu
aqWVaiB//Vv7G3sj6fI8LU0N3F+iFYAxfH7bd5x6uqsGRIvXjdqxEUN9/SP5
GrigSkqjnyCj8Xt0lNMaNbDbS0HcEJumR4H9p0ENdNB0eqRiyyeUXrOzqYGJ
MlLC5Ukyqjibs2T1ugZ2npBwq5vC8+MILv6EGigMb8wVmMbz/xOWmU6rgcWp
waNB2AqdH/1uVNbA5xmR31dmyKjKOobHiFwDK7lWxuxz+P+4YGNjuloD7A1F
5u7Y729Ll5jT1IL0n8GxRWxfyz7je5y10Mqq6tIzT0ZqZmxvvWVqYY2eQ6/6
Kz5PJsYW/FVqodLpJIvKN3yfuJFx9rlOLTBNnphsxmYy1RiItKiFAjOX4xNk
Mmoz8t2TEVwLJey2O88QOJ7+S7e/vK6FazyTSl3YWYZ8hYXxtfBLkGT18DsZ
vTRAhtW5tfCUwfRX7RK+/+j+ed0/XAuqF+OW3y3j86q9fnZkthbOmj+/aLKC
+0f7tcTU91owffkh7/AqGXFrifdS6OqA+y795YpfuN5qtru2CtcBQ+3InOw6
GZHqz91ikKwDUe4TKUJ/cX1VGPN2KtTBMfFHa7z/yChO+aP+HoM6CD5tJc67
SUZm8hPhwm518HB5tMl5KwVdQplTp57VQfRLraZEOgpSlnsqLvWiDhJEvC16
6CnoqAxPl+KHOlj5+S3egIGC5iUN2K+Q6sA05qVN804KGsg/bGbSVwe/b89f
V2KhoKYzP7LNJurgu3pWdh0rBaWJh+rartTBqkA62xIHBUXnmCQ4bNbBWjRa
j9xFQcEnhZactteD+Hvpda3dFHRPtDHMa389sMX0H5zYS0HXM96MPxOohw66
ZMWKfRSkI2wpFnKyHkbnbj3KOEBBpwS3tr85Xw+s/dZyxXwUtMIvy5JuWw+F
4lXRcYIUJDepWB/oXA+CbcpaMiIU5Bej5n7bux4SEg4//i5GQVyc+sThqHrI
6Ds9lChBQaZtRh9p39fD8AHehcSzFJQceP36WEY9pLd48JfLUJAErU3b25p6
QDKPBNSVKOhpqf0z57Z6KLZsXi5VoaA6p0dwebAeCg7uodNWpyDDRc9Mtu/1
4PhIULhHl4KchyJD/Xka4Gk5A7O/GQVVvI5VteRvgBRvqWMcVhTEoPd+U+lk
A3g81T5WZ0NBUQ2ZdpsqDRDMJ/Tn40MKmvTOExjRbQDah/1V/Y8p6ASUjBVf
awDJ0eDrZzwoqDivTvuRQwNEMvbbPAyioC33W7bpuzUAzY48Q+MXFKQu1IlO
+jdAnNPW7ffeUNBQ4ogoJaYBXB5kvT38noL+hi6zWDQ2wLf8mi0khPtBY61e
obsB5APKNETqcb3+o/E4ONYADjo6IuWtFLTfbcf3weUGOFQtKWA5ivNtzdeu
e6gRUi5vbGRtUpC7sk4YODXCM/7PqfJqi6hh00Btv1cjDOtttfmou4hYS67S
rAc3QlZT8v5dVxdR/Ekr+/zERvhxcN/OVdtFVHHgqY5wayOEaPLfMQ9fRFv+
pLHyHG0CIbGNo/MDi4iHpPgTRJuA8LidHzqxiE4nDPRYnG2CLUPvI9kXFtGt
C9veZWg1QXPDnrYPv/D7o8yOKj5qgqehPD++sRNowvbPNiuPJlASrP98mZtA
awphX4MCm+BTc+S3NwcJJPS1LLMntgkCab7IxwoSKFSaW/pOfRNEkEnCVQoE
+sScte95RxNwDvDQzqsQqGJSZTNnqAlo6v1N5jQI9CPQseYv0QQkKTe/hwYE
2nF9x0fetSZ4a2PdR29MoCPiiQEqdM2gElWb72BKoMtDbRfD9jRDxsKQ04wl
gewyLU/m8TVDYa4HC8WaQP7e/zgGhZqBef5rbPc9AhUJCg4cVmiGbWybR1Qf
EWjfEz/zgjvNEPt48HinN4HO6OxXGX7QDO6vFtuX/Ah08UjuMdqnzWAVUqL+
O4BA7i0TFPWXzRDcwkkuDSVQZLxzu110M9Cp+Sc9eUmgLEeWLxHJzcAwy67F
/4pAk/tknUeLm0HJap+Z9FsCrX/vMt5a2wz619YlkqMJxFlrLXusrRlOzbxs
34glkIpt5BaHqWYwme8jOycRKKXsZzA9Uwu8njL7lpBGoKoXgXYnuFqglZ9P
yDedQIO3ePW0D7VAzur4jFEmgZiYtXdHnW6B3uXI6oEcAtmbpiYImbRAcmK6
sHwRgQJOKfjoWrXAtJOESWkxgRL/67d8dL8FCpQYXwuXEqgrg16owrcFmry1
E76XE0hi80b+pYwW2DfA1LalhkCaWhVe5wtbIO6Nr4RgLYHM3x3UlqxqAf+t
M7EadQQKkxyd29vbAlt/Jj952ECgBbur3JP/WsAL8Yk5thCIprx4pmsbCSrd
2B6akwjExbQ3p5aNBLv/S43QbCWQ4qd+9ZSjJMg/PnJ8ZzuBoscNnthrkeB6
B3eeZheBckTy1MwMSXBqR8YMSzeBGp5w7tK/SQLi/RfdVuyVPV3pkg9JUC67
Zifbi+unqzO2EU0COZ7EgPl+AlnEZaZ9TyaBX2O3ecAAgVwpzM6TWSQQMErx
5B/E/RlAYq2rIUFO5tNfBkMEoq1SVwwhk4DleHli8AiB9rCmMruvkoDD/6Az
+yiBREy3D9nTtMJ4V/CVV9jGa/UP9DlbgS1t4/nLMQLlnjr/gUemFd7SnVi/
O0GgJo/393eqtILy08OGI9jjrVvlNrVbIdZzx2WNSQLttKnqnTRvhZ+xRm6H
pghkmQQMqUGtQHfYe2/2NIGeLMV2v3vVCoZa9tKsMwQKh434kLhW+FG5y8EW
u2Ko9Oz9L61Qvj3CmG+WQNyc0jZSQ63AwBto5DRHoBaf0611J9pg9GeMbN8C
gaRZmre8ONMGfot0I3xfcfxRNyWvyreBj3DV37vY3hnP4wmDNlC7fWf6L7Z0
/7zDHs82mFn/ZcBExuPN3D9OBrVBuO7CuiY2F2XX8OfXbVDAdvBOMPYSrdJ5
hc9tsM4yW7CNgscLxuy27msDHYVL379jc+WLa56ebAMa2rB3xxYJ5CPf5LFB
bgMh+bjz17GzUtcdL9C2Q+A/tYxG7CB0bHSEqx1ufJm2Dydwvyx4Zf2n2A6X
dzad3vxOIBeR1iYbVTx+c07z+BKe/4B7pl2zHWqOD+boYR/YyOR+Z9gOExpR
TknYf9hHvERt28Gr2UNd9geBxK4ci4lwaIcrrrRSZtiWMQ8K/ji1wx+Zl6F+
2N0CjORqr3bYonQpgISdJSNpcCWyHQSbt67p/yTQnKeXXVlMO2Qd0gp6iH2g
nhTAl9QO66thMa+wg3Utysnp7fBhl5B2N/ZtyxcCntXtcPOd3AnNZQIdDPv2
J2WxHXgCrNIFVghUftM9JednO7A/W04FbFNxDqOS3+0ga/LS0BA7ule6sGVL
B2g6xVT7Yu/ZH/iI4OoAqfRwpjFs9tRjP09DB0QtH3X2WSVQtmtpoqxyB2TT
X6eJxNbR0tFTudABn73+qqdhh353yja81AGOGpaCHdhMkvV2j606gPfilPje
XwSir7lFRqEd0LzbXTAR+/2rP+8aIjqgif2cWg62slWIRkdUBzS0nj9The3F
mJc6mYRtdcp7AntDh+4OfSEen8265cBvAv0eSZxRH+8AyzNPDoRiv8mUeHVp
pgNkKG1h0dgSnk3K1752AMf5lJEU7IdHfiTZLuP9pHFtr8H+Ya1gFsbQCSJs
znmr2N9+jY32iHVCoVx2h8EfAuVbhVapS3TClFPHXjNsjz65ZHSuE3I8F+Tv
YXMVxNimqHQCzxUOfj9sxUdX/z651gmhGapmudhvl3u5j/h3Ql7Ee8YdawS6
ZeH3LzKkEy4Wpl/bhS3WfWZiZ3gnVHauvjyIXfcl4tOvmE641tqTLo695KAn
2fylE67mKXw0xlZbIuk7jHVCTfndX0nYHDfdpOamO2Hfq+jCz9ij7UL7rn3t
BBfaAPM8bMesoKnzK51APl/rVIcdZ3fBgXtHF+w0qkuYw16l1IRWSHRBxYXf
kvzruB5fS5qYn3cB7bXM3a+x773RPmwd3gXFfwbtorElladcayO7oCWpvCgR
uymGUfhJUhcMLhodzsRe0jEKXSjsgjlJe716bLmC1Us1U10wKZGmuILNYBH4
+eBCF6hZyDauYXeyHqB3XewCFuGfSjR/cX6sz+ef/NMFx7t0uXZgB++P2BPH
3A2dLY9PHcIe8D454nK2Gxy3bZirYSeK1Z7pkesGOo6Oc1rYd0euPBdT7oYS
lbztetg0kh4wd7Ebjuse8L+Kzf+1NUHfohtcW43Z72E76ty1FA3thjbKW4cX
2Mz7PxLT091Q/rBwSye2/GXvkamFbnj97mJgD7ZD6PXmycVukC7K3jGA3Uu7
5+P4726oucr9dww7dtbfdJipByZMNyIo2CJZ1qSu0z1Qvsj9Zds/AmkpiaRV
+fRAQ33Wb0nsp08YoyoDeqCb0aBLGjsrb9av4nkPvPmqmyKLzXkszqw8sgfO
Gz1VVcIeZmLdW/y5BxSbirQuYt/tXfLP7u4B21+8gebYwXfyLOOP9MLa72Ga
IOyv8un+O070QmQXQ1AItuqeD6mPRHuB3ZuOLQx7S33EoqZ0L3i9DWN9he1y
xPHRH+1e+Ba3NhqLbTl2yk/PtRf+yyqtyMZWMMj6QNfZC4N7PNu7sWOFPtXb
9fVCkgEx3Yv9d2v8wuBwL/A4C672YxfmhApnz/VC1JIAywi2CKtdnsm/XjgR
Nsczg72vWbg2/1gf8EqtfVjGXpVPm77t3gczkywf2DYIVPr+2zsnnz7geRCo
wIHtxSB0yS+gD7jlhoY4sZnbP1cmhffBC2kWxj3Y/NczYkc/9sFcj5DWAezL
btlX9Nv7QCrO6/4J7Lyighbg7Ydtz9k0FLAf7//tfZG/H57c0EtRxJb3lDpn
ItgP2hl99MrYLWpFKY/P9EN7bEmRCvZ0X7Ff3oV+aEqQ3qmJzblaJi/o0A93
7oTeuozteKoml6u6H7wdzyzewbY8fSj+RUM/GLpeFbfBviLxJIiptR8+Rg49
uot9Tvq02ZaBfqDNWvl9D3uL4nuWxcV+uLt/YuEBdqiuj3Xt3gF4y7Hp4Yad
aq98yNFhADysnF+HYkc7xO8gnAbgWgTz5zDsEMe/q3fcBmA1UKfiBba9cy7p
uv8A7M0Ynw7HlvQ44qoROwBHCu4diMSuCaXr5WsagJBnew3isccyaoI6eAdB
h/ntaCZ2O4WOfEpgEJL+qDVmYVcIndeMEBqEn+bknGzs+NRaJkPJQaAT2+39
BdssuS5kWHMQZLSP7y7Ano1pCJ1zGgQP4i1LOTYluCX8H2kQtl9Y1WjGHm1m
WjbtGgRPvUN7WrBbGbX0K/oHweCY7RTVGf4kTu8pbD1Hp1ZqPD6trxj+DIJp
y9VXHdjLru1vOI4MgYtUQkof9rp197vjj4eAvptPZgpbX8LkhYj7ELyoXJuk
+jPtrJ+4zxB8/ncyYBrbNPLXfdnnQ1CQXtk1g11Zu1dNN3EIfuY9uTmP/ezQ
zWXnpiEw1ue4QcHm6KVoNuwdhqE+FmIVW1Bh24ZlCfbRuccMm9T7RppAf8Uw
dNLaMm7HPs2po3uhbhjICneiqJaZi3wv2DEMoag+jxH7YsgJje+zwzDDLzbP
hO0woBXpwj4CFYkqp9mwi+5HnAq+MwJPYtnucWOrJvJaZe8ehXdsvAHHqOtH
MvPX7RsFIfo3P6k+9Hx9epB3FOod8kyOY6+59JjRCY2ClgpF7AR2um6AqaH8
KFxzutQliM1Bu2Tw7/YobHumxSCKPXa9QvlC8SjQx7ucOYPttP8638S1Mah7
LZIpj22mI3Z5+OYYvKHU0ClQ9+9NG9hnOQZ7JHiMqeZfSFoi2Y/BpSQGOkXs
7tz5imKfMbjAvKivhC2m6XA94vMYNLHyfDuPPf/YN1r17xjcjPn8VR1biGyw
o09rHBI0RJX0sQv1NVGgzjiYdySFUa1UpvhA7tI47Hw3MkK18XPRoQ9XxoGW
SHAywA4Q257maD4OgtKOny5jzzqWqrO7jIPXjQebV7Dj//EFar0fhy337/qY
UONn+c5QszYOTc6zK7ew6dC7zMPRE3Df+PnIA2yb0yUD2zUm4a99XYYHdtoF
s/jy1UnQlVKzC8Je+baXdfb1FNAnn+WLwM67pLo1QnkaVHPKrkdju6v5xuXO
TkOjaC1vEjbviHp/ku8MHFoXo0/Blpb0ieA+NQuuzuV5GdjXDrT9oe2aBd0I
+odfqOs3hUzae86B6Q5lzkLsSDpTR70j87Ct79zvEur+R/MSt9TMg0gh2Q5h
07t56p+9vwCirsRQFTZNimnmJPtX8Do4VFtL7a+3mSHsVV+BLOaW0oBdJujP
wHbvGwiLSCk2Y7OpOwh5MZPB9VmsGwl7WLi9y6WUDPvCR4raqP0dC0emTSmQ
9Fz1Uwe2SaYE2/4NCoj6Wdh0YXv4JngOpy5CzMbkqR5qv83vf8esScDDQQ7U
i+0f43tj9CIBv2sra6m20KMczdAlYKPYtoXqfaWlWVqGBPTXoAGqA0Ov1gWb
ERB6T3OZ6tsSUUuMLgSstTIc78Pm8+FU25ZMAEmf4wXVG1JPdvZ9IoBxw/sN
1QOUqc7kNAL4mn7EUB1m+MVEJZuAFVJTKtWbJ/Qe+JYS4BRlUUP1cEdo7NYu
AqQW4BfVhX6/zLt68Hye8H9UR5y7fjypn4BfrtNb+7E1PojkKo4SoE/yZKW6
2JnU6LlAgE918nGqXwufCdUlE2Dp+U2U6vuT0fq8BAEcjiISVB/TvDtWsUxA
6VqGItV0tN3vw34RIBhGVqN6PO+c9Y01Ai6aHNOmutQ6SVTsHwHDZmYGVL85
uGNlc5OAFwlvr1L9Px37NJE=
"]]}, Annotation[#, "Charting`Private`Tag$3416#1"]& ]}}, {}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, -0.9999810971394699}, FrameTicks -> {{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, -0.9999810971394699},
DisplayFunction :> Identity, Frame -> {{True, True}, {True, True}},
FrameLabel -> {{
FormBox["\"w(z)\"", TraditionalForm], None}, {
FormBox["\"z\"", TraditionalForm], None}}, FrameStyle -> GrayLevel[0],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}}, PlotRange -> {All, All}, PlotRangeClipping ->
True, PlotRangePadding -> {{Automatic, Automatic}, {
Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}],FormBox[
FormBox[
TemplateBox[{"\"\[CapitalTheta]\"", "\"Sqrt\""}, "LineLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
"RGBColor[0.368417, 0.506779, 0.709798]"], Appearance ->
None, BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.841135874312784*^9, 3.84113587828223*^9},
3.841136154266805*^9, 3.8411410739153004`*^9, 3.8411414042405124`*^9,
3.842757411750802*^9},ExpressionUUID->"5ecf65ed-9d8f-4e12-a3f5-\
3339c431fe50"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
RowBox[{"The", " ", "DE", " ", "density"}], ",", " ",
RowBox[{
"and", " ", "the", " ", "equivalent", " ", "potential", " ", "and", " ",
"kinetic", " ", "terms", " ", "of", " ", "a", " ", "minimally", " ",
"couple", " ", "scalar", " ", "field"}], ",", " ",
RowBox[{
RowBox[{
"see", " ", "Sahni", " ", "and", " ", "Starobinsky", " ", "astro"}], "-",
RowBox[{"ph", "/", "0610026"}]}]}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[CapitalOmega]de", "[", "x_", "]"}], ":=",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{"1", "-", "at", "+",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "at"}], ")"}], "2"], "+",
SuperscriptBox["da", "2"]}]]}],
RowBox[{"a", "-", "at", "+",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "-", "at"}], ")"}], "2"], "+",
SuperscriptBox["da", "2"]}]]}]], ")"}],
FractionBox[
RowBox[{"3", " ",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "at"}], ")"}], "2"], "+",
SuperscriptBox["da", "2"]}]], " ",
SqrtBox[
RowBox[{
SuperscriptBox["at", "2"], "+",
SuperscriptBox["da", "2"]}]], " ", "\[CapitalDelta]w"}],
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["at", "2"], "+",
SuperscriptBox["da", "2"]}]], "+",
RowBox[{"at", " ",
RowBox[{"(",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "at"}], ")"}], "2"], "+",
SuperscriptBox["da", "2"]}]], "-",
SqrtBox[
RowBox[{
SuperscriptBox["at", "2"], "+",
SuperscriptBox["da", "2"]}]]}], ")"}]}]}]]], " ",
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "at"}], ")"}], " ", "at"}], "+",
SuperscriptBox["da", "2"], "+",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "at"}], ")"}], "2"], "+",
SuperscriptBox["da", "2"]}]], " ",
SqrtBox[
RowBox[{
SuperscriptBox["at", "2"], "+",
SuperscriptBox["da", "2"]}]]}]}],
RowBox[{
RowBox[{
RowBox[{"-", "a"}], " ", "at"}], "+",
SuperscriptBox["at", "2"], "+",
SuperscriptBox["da", "2"], "+",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "-", "at"}], ")"}], "2"], "+",
SuperscriptBox["da", "2"]}]], " ",
SqrtBox[
RowBox[{
SuperscriptBox["at", "2"], "+",
SuperscriptBox["da", "2"]}]]}]}]], ")"}],
FractionBox[
RowBox[{"3", " ", "at", " ",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "at"}], ")"}], "2"], "+",
SuperscriptBox["da", "2"]}]], " ", "\[CapitalDelta]w"}],
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["at", "2"], "+",
SuperscriptBox["da", "2"]}]], "+",
RowBox[{"at", " ",
RowBox[{"(",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "at"}], ")"}], "2"], "+",
SuperscriptBox["da", "2"]}]], "-",
SqrtBox[
RowBox[{
SuperscriptBox["at", "2"], "+",
SuperscriptBox["da", "2"]}]]}], ")"}]}]}]]]}], "/.",
RowBox[{"a", "\[Rule]",
RowBox[{"1", "/", "x"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Vx", "=",
RowBox[{
RowBox[{
RowBox[{"H", "[", "x", "]"}], "^", "2"}], "-",
RowBox[{
FractionBox["x", "6"],
RowBox[{"D", "[",
RowBox[{
RowBox[{
RowBox[{"H", "[", "x", "]"}], "^", "2"}], ",", "x"}], "]"}]}], "-",
RowBox[{
FractionBox["1", "2"], "om", " ",
RowBox[{"x", "^", "3"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"phip2", "=",
RowBox[{"\[Epsilon]",
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox["2",
RowBox[{"3", "x"}]],
RowBox[{"D", "[",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"H", "[", "x", "]"}], "]"}], ",", "x"}], "]"}]}], "-",
FractionBox[
RowBox[{"om", " ", "x"}],
RowBox[{
RowBox[{"H", "[", "x", "]"}], "^", "2"}]]}], ")"}]}]}], ";"}], "\n",
RowBox[{
RowBox[{"Vx1", "=",
RowBox[{"Vx", "//", "FullSimplify"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"phip21", "=",
RowBox[{"phip2", "//", "FullSimplify"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"H", "[", "x_", "]"}], ":=",
SqrtBox[
RowBox[{
RowBox[{"om", " ",
RowBox[{"x", "^", "3"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-", "om"}], ")"}],
RowBox[{"\[CapitalOmega]de", "[", "x", "]"}]}]}]]}]}]}]], "Input",
CellChangeTimes->{{3.841135559189485*^9, 3.841135605483488*^9}, {
3.8427574228581038`*^9, 3.842757466265538*^9}, {3.8427575140092473`*^9,
3.842757523084257*^9}, {3.84275759077674*^9,
3.8427575910920687`*^9}},ExpressionUUID->"13fb5914-b956-4d30-8e32-\
9e5616fd49c7"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Parameters", " ", "that", " ", "correspond", " ", "to", " ",
"quintessence", " ", "and", " ", "phantom", " ", "fields"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"cosmoq", "=",
RowBox[{"{",
RowBox[{
RowBox[{"da", "\[Rule]", "0.01"}], ",",
RowBox[{"\[CapitalDelta]w", "\[Rule]", "0.05"}], ",",
RowBox[{"at", "\[Rule]",
FractionBox["1",
RowBox[{"1", "+", "0.2"}]]}], ",",
RowBox[{"om", "\[Rule]", ".3"}], ",",
RowBox[{"\[Epsilon]", "\[Rule]", "1"}]}], "}"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"cosmop", "=",
RowBox[{"{",
RowBox[{
RowBox[{"da", "\[Rule]", "0.01"}], ",",
RowBox[{"\[CapitalDelta]w", "\[Rule]",
RowBox[{"-", "0.05"}]}], ",",
RowBox[{"at", "\[Rule]",
FractionBox["1",
RowBox[{"1", "+", "0.2"}]]}], ",",
RowBox[{"om", "\[Rule]", ".3"}], ",",
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{"-", "1"}]}]}], "}"}]}], ";"}]}]}]], "Input",
CellChangeTimes->{{3.819369308991767*^9, 3.8193693110612497`*^9}, {
3.819383773661623*^9, 3.8193837940772896`*^9}, {3.8411365550256934`*^9,
3.8411365675858192`*^9}, {3.8411369103360906`*^9, 3.841136911295892*^9}, {
3.8427575406142497`*^9,
3.842757558100988*^9}},ExpressionUUID->"f3f3603e-63d5-4174-97bf-\
f7124e63acef"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Solve", " ", "the", " ", "ODEs", " ", "in", " ", "the", " ", "two", " ",
"cases"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"sol\[Phi]q", "=",
RowBox[{
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Phi]", "'"}], "[", "x", "]"}], "\[Equal]",
RowBox[{"-",
SqrtBox[
RowBox[{"phip21", "/.", "cosmoq"}]]}]}], ",",
RowBox[{
RowBox[{"\[Phi]", "[", "100", "]"}], "\[Equal]", "0"}]}], "}"}],
",", "\[Phi]", ",",
RowBox[{"{",
RowBox[{"x", ",", "1", ",", "100"}], "}"}]}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sol\[Phi]p", "=",
RowBox[{
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Phi]", "'"}], "[", "x", "]"}], "\[Equal]",
RowBox[{"-",
SqrtBox[
RowBox[{"phip21", "/.", "cosmop"}]]}]}], ",",
RowBox[{
RowBox[{"\[Phi]", "[", "100", "]"}], "\[Equal]", "0"}]}], "}"}],
",", "\[Phi]", ",",
RowBox[{"{",
RowBox[{"x", ",", "1", ",", "100"}], "}"}]}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], ";"}]}]}]], "Input",
CellChangeTimes->{{3.819369194051175*^9, 3.819369251011178*^9}, {
3.819369303631867*^9, 3.819369305021779*^9}, {3.81936943013099*^9,
3.819369462730941*^9}, 3.8193697119616623`*^9, {3.819383819776763*^9,
3.819383829666686*^9}, {3.819383932986888*^9, 3.819383948488931*^9}, {
3.8193840321562953`*^9, 3.819384115636529*^9}, {3.8427575975125165`*^9,
3.8427576099668493`*^9}},ExpressionUUID->"ce79daa4-0063-4176-a1e4-\
49fcc7b83c8d"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"z\[Phi]q", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Phi]", "[",
RowBox[{"1", "+",
RowBox[{"10", "^", "log10z"}]}], "]"}], "/.", "sol\[Phi]q"}], "//",
"Log10"}], ",",
RowBox[{"Round", "[",
RowBox[{
RowBox[{
RowBox[{"10", "^", "log10z"}], "//", "N"}], ",", "0.1"}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"log10z", ",",
RowBox[{"-", "1"}], ",", "1", ",", "0.25"}], "}"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"z\[Phi]p", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Phi]", "[",
RowBox[{"1", "+",
RowBox[{"10", "^", "log10z"}]}], "]"}], "/.", "sol\[Phi]p"}], "//",
"Log10"}], ",",
RowBox[{"Round", "[",
RowBox[{
RowBox[{
RowBox[{"10", "^", "log10z"}], "//", "N"}], ",", "0.1"}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"log10z", ",",
RowBox[{"-", "1"}], ",", "1", ",", "0.25"}], "}"}]}], "]"}]}]}], "Input",
CellChangeTimes->{{3.819369658571087*^9, 3.8193697663113756`*^9},
3.8193698548606763`*^9, {3.819369958290512*^9, 3.8193700079910927`*^9}, {
3.8193700542851744`*^9, 3.8193702297401724`*^9}, {3.819370293545584*^9,
3.8193703015231886`*^9}, {3.819383876637003*^9, 3.819383885976679*^9}, {
3.8193843242468376`*^9, 3.819384342136496*^9}, {3.8411364952653885`*^9,
3.8411365018450966`*^9}},ExpressionUUID->"9fca3010-54cb-47e8-bc3f-\
b729ff99d0b7"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.701487050880431`"}], ",", "0.1`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.0977212842781983`"}], ",", "0.2`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.663915466194851`"}], ",", "0.30000000000000004`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.9390519831545086`"}], ",", "0.6000000000000001`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "3.2301447244261876`"}], ",", "1.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "3.570418436379367`"}], ",", "1.8`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "3.9617274979694628`"}], ",", "3.2`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "4.393216597121164`"}], ",", "5.6000000000000005`"}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "4.8535381383439224`"}], ",", "10.`"}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{
3.841136216794721*^9, {3.84113649673505*^9, 3.841136503065422*^9}, {
3.8411365591202693`*^9, 3.841136570031403*^9}, 3.8411369157767243`*^9,
3.841141101925561*^9,
3.842757622922966*^9},ExpressionUUID->"56b56e79-26f0-4aa5-95f0-\
450dae4d6e85"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.705762893221564`"}], ",", "0.1`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.103512609101186`"}], ",", "0.2`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.6719711399267214`"}], ",", "0.30000000000000004`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.948488575374045`"}], ",", "0.6000000000000001`"}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "3.240750997871644`"}], ",", "1.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "3.5818043045987653`"}], ",", "1.8`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "3.9734686570036923`"}], ",", "3.2`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "4.40506197285591`"}], ",", "5.6000000000000005`"}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "4.86541519913174`"}], ",", "10.`"}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{
3.841136216794721*^9, {3.84113649673505*^9, 3.841136503065422*^9}, {
3.8411365591202693`*^9, 3.841136570031403*^9}, 3.8411369157767243`*^9,
3.841141101925561*^9,
3.8427576229289503`*^9},ExpressionUUID->"23d8c70a-1d22-48aa-b77b-\
c6a3dc9c177c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Make", " ", "the", " ", "plots"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{"plots", "=",
RowBox[{"{",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"wDE", "/.", "cosmoq"}], ",",
RowBox[{"wDE", "/.", "cosmop"}]}], "}"}], "/.",
RowBox[{"a", "\[Rule]",
FractionBox["1",
RowBox[{"1", "+", "z"}]]}]}], "//", "Evaluate"}], ",",
RowBox[{"{",
RowBox[{"z", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"All", ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.06"}], ",",
RowBox[{"-", "0.94"}]}], "}"}]}], "}"}]}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<z\>\"", ",", "\"\<w(z)\>\""}], "}"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"Placed", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\"\<Quintessence\>\"", ",", "\"\<Phantom\>\""}], "}"}],
",",
RowBox[{"Scaled", "[",
RowBox[{"{",
RowBox[{"0.8", ",", "0.85"}], "}"}], "]"}]}], "]"}]}], ",",
RowBox[{"FrameStyle", "\[Rule]", "Black"}], ",",
RowBox[{"ImageSize", "\[Rule]", "400"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",