Skip to content

Latest commit

 

History

History
131 lines (95 loc) · 4.41 KB

README.md

File metadata and controls

131 lines (95 loc) · 4.41 KB

The LogicMonitor Python Data library

This Python Library is suitable for ingesting the metrics into the LogicMonitor Platform

Documentation Status PyPI - Version PyPI - Downloads

Overview

LogicMonitor's Push Metrics feature allows you to send metrics directly to the LogicMonitor platform via a dedicated API, removing the need to route the data through a LogicMonitor Collector. Once ingested, these metrics are presented alongside all other metrics gathered via LogicMonitor, providing a single pane of glass for metric monitoring and alerting.

Requirements.

Python 2.7 and 3.4+

Documentation

https://logicmonitor-data-sdk-py.readthedocs.io/en/latest/

Getting Started

Please install using pip and then run below a working example for submitting the disk metrics to your LM account. This script will monitor the Usage, Free and Total of the disk at every 10 sec interval.

    import logging
    import os
    import sys
    import time
    
    import psutil as psutil
    
    import logicmonitor_data_sdk
    from logicmonitor_data_sdk.api.response_interface import ResonseInterface
    from logicmonitor_data_sdk.models import Resource, DataSource, DataPoint, \
      DataSourceInstance
    
    from logicmonitor_data_sdk.api.metrics import Metrics
    
    logger = logging.getLogger('lmdata.api')
    logger.setLevel(logging.INFO)
    
    configuration = logicmonitor_data_sdk.Configuration()
    # For debug log, set the value to True
    configuration.debug = True
    
    
    class MyResponse(ResonseInterface):
      """
      Sample callback to handle the response from the REST endpoints
      """
    
      def success_callback(self, request, response, status, request_id):
        logger.info("%s: %s: %s", response, status, request_id)
    
      def error_callback(self, request, response, status, request_id, reason):
        logger.error("%s: %s: %s %s", response, status, reason, request_id)
    
    
    def MetricRequest():
      """
      Main function to get the CPU values using `psutil` and send to Metrics REST endpoint
      """
      device_name = os.uname()[1]
      resource = Resource(ids={'system.displayname': device_name}, name=device_name,
                          create=True)
      datasource = DataSource(name="DiskUsingSDK")
      datapoints = ['total', 'used', 'free']
      metric_api = Metrics(batch=True, interval=30, response_callback=MyResponse())
      while True:
        partitions = psutil.disk_partitions()
        for p in partitions:
          instance_name = p.device
          usage = psutil.disk_usage(instance_name)._asdict()
          # Create the instance object for every device. Name should not have the
          # special characters so replacing it with the '-'.
          instance = DataSourceInstance(name=instance_name.replace('/', '-'),
                                        display_name=instance_name)
          for one_datapoint in datapoints:
            datapoint = DataPoint(name=one_datapoint)
            values = {str(int(time.time())): str(usage[one_datapoint])}
            metric_api.send_metrics(resource=resource,
                                    datasource=datasource,
                                    instance=instance,
                                    datapoint=datapoint,
                                    values=values)
        time.sleep(5)
    
    
    if __name__ == "__main__":
      MetricRequest()

Then run the program as:

    pip install psutil
    LM_COMPANY=<ACOUNT_NAME> LM_ACCESS_ID=<ID> LM_ACCESS_KEY='<KEY>' python disk_metrics.py

Get in Touch

If you have questions in general, reach out to our support


Copyright, 2021, LogicMonitor, Inc.

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain one at https://mozilla.org/MPL/2.0/.