Skip to content

Latest commit

 

History

History
28 lines (21 loc) · 981 Bytes

README.md

File metadata and controls

28 lines (21 loc) · 981 Bytes

DRL-implementations

Implementation of DRL algorithms for solving gym environments. Setup dependencies by installing spinningup. There are baseline implementations of some DRL algorithms in spinningup.

run examples

# can use command line to modify the parameters of dqn agent
# use tensorboard to visualize the results
# python example/dqn.py --name <configuration-name> --render 
python <name-of-the-algorithm>.py --name <configuration-name> --render 

run trained agent

python run_drl.py --name <configuration-name> --render --agent <name-of-agent> --ckpt <ckpt-filepath-of-agent>

LunarLander-v2 dqn

remarks

TODO

  1. unittests