-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathgui.py
790 lines (705 loc) · 30.7 KB
/
gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
import sys
from PyQt5 import Qt
from PyQt5 import QtCore,QtGui
from PyQt5.QtCore import QMutex, QObject, QRunnable, pyqtSignal, pyqtSlot, QThreadPool, QTimer, QThread
from PyQt5.QtWidgets import QWidget,QMainWindow,QHeaderView, QMessageBox, QFileDialog
from nvidia_tacotron_TTS_Layout import Ui_MainWindow
from ui import Ui_extras
from timerthread import timerThread
from preprocess import preprocess_text
import time
import requests
import json
import datetime
import numpy as np
import os
import pygame
import sys
sys.path.append(os.path.join(sys.path[0],'waveglow/'))
import numpy as np
import torch
from hparams import create_hparams
from model import Tacotron2
from train import load_model
from text import text_to_sequence, cleaners
#from denoiser import Denoiser
from secrets import TOKEN # for debugging
_mutex1 = QMutex()
_running1 = False # tab 0 synthesis QThread : Start/stop
_mutex2 = QMutex()
_running2 = False # tab 1 eventloop QRunnable: Start/stop
_mutex3 = QMutex()
_running3 = False # tab 1 eventloop QRunnable: Skip current item
#https://www.learnpyqt.com/courses/concurrent-execution/multithreading-pyqt-applications-qthreadpool/
class WorkerSignals(QObject):
'''
Defines the signals available from a running worker thread.
Supported signals are:
finished
No data
error
`tuple` (exctype, value, traceback.format_exc() )
result
`object` data returned from processing, anything
progress
`int` indicating % progress
'''
textready = pyqtSignal(str)
finished = pyqtSignal()
error = pyqtSignal(tuple)
result = pyqtSignal(object)
progress = pyqtSignal(int)
elapsed = pyqtSignal(int)
fncallback = pyqtSignal(tuple)
class Worker(QRunnable):
'''
Worker thread
Inherits from QRunnable to handler worker thread setup, signals and wrap-up.
:param callback: The function callback to run on this worker thread. Supplied args and
kwargs will be passed through to the runner.
:type callback: function
:param args: Arguments to pass to the callback function
:param kwargs: Keywords to pass to the callback function
'''
def __init__(self, fn, *args, **kwargs):
super(Worker, self).__init__()
# Store constructor arguments (re-used for processing)
self.fn = fn
self.args = args
self.kwargs = kwargs
self.signals = WorkerSignals()
# Add the callback to our kwargs
self.kwargs['progress_callback'] = self.signals.progress
self.kwargs['elapsed_callback'] = self.signals.elapsed
self.kwargs['text_ready'] = self.signals.textready
self.kwargs['fn_callback'] = self.signals.fncallback
@pyqtSlot()
def run(self):
'''
Initialise the runner function with passed args, kwargs.
'''
# Retrieve args/kwargs here; and fire processing using them
try:
result = self.fn(*self.args, **self.kwargs)
except:
pass
# traceback.print_exc()
# exctype, value = sys.exc_info()[:2]
# self.signals.error.emit((exctype, value, traceback.format_exc()))
else:
self.signals.result.emit(result) # Return the result of the processing
finally:
self.signals.finished.emit() # Done
class GUISignals(QObject):
progress = pyqtSignal(int)
elapsed = pyqtSignal(int)
class GUI(QMainWindow, Ui_MainWindow, Ui_extras):
def __init__(self,app):
super(GUI, self).__init__()
self.app = app
### Setup UI and signals
self.setupUi(self)
self.drawGpuSwitch(self)
self.initWidgets(self)
self.signals = GUISignals()
self.setUpconnections(self)
### Init vars
self.model = None
self.waveglow = None
self.hparams = None
self.current_thread = None
self.t_1 = None # timing
self.logs = [] # message logs
self.logs2 = []
self.max_log_lines = 3
self.max_log2_lines = 100
self.TTmodel_dir = [] # list of model paths
self.WGmodel_dir = []
self.reload_model_flag = True
self.channel_id = '' # stream elements channel ID
# Because of bug in streamelements timestamp filter, need 2 variables for previous time
self.startup_time = datetime.datetime.utcnow().isoformat()
#self.startup_time = '0' # For debugging
self.prev_time = datetime.datetime.utcnow().isoformat()
#self.prev_time = '0' # for debugging
self.msg_offset = 0
self.se_opts = {'approve only': 2, # Stream element options
'block large numbers': 0,
'read dono amount': 2,
}
self.fns = {'GUI: start of polling loop': self.fns_gui_startpolling, # Callback functions
'GUI: end of polling loop': self.fns_gui_endpolling ,
'Wav: playback' : self.fns_wav_playback,
'Var: offset': self.fns_var_offset,
'Var: prev_time': self.fns_var_prevtime,
'GUI: progress bar 2 text' : self.fns_gui_pbtext,
'GUI: reenable skip btn' : self.fns_gui_enableclientskipbtn}
self.pyt_opts = {'cpu limit': None, # pytorch options
'denoiser':None}
### Init pygame mixer
pygame.mixer.quit()
pygame.mixer.init(frequency=22050,size=-16, channels=1)
self.channel = pygame.mixer.Channel(0)
### Init qthreadpool
self.threadpool = QThreadPool()
print("Multithreading with maximum %d threads" % self.threadpool.maxThreadCount())
### Setup Complete
self.update_log_window("Begin by loading a model")
@pyqtSlot(int)
def toggle_cpu_limit(self, state):
self.label_10.setEnabled(state)
self.OptLimitCpuCombo.setEnabled(state)
@pyqtSlot(int)
def change_cpu_limit(self, indx):
num_thread = indx + 1
self.pyt_opts['cpu limit'] = num_thread
@pyqtSlot(int)
def toggle_approve_dono(self, state):
self.se_opts['approve only'] = state
@pyqtSlot(int)
def toggle_block_number(self, state):
self.se_opts['block large numbers'] = state
@pyqtSlot(int)
def toggle_dono_amount(self, state):
self.se_opts['read dono amount'] = state
@pyqtSlot(tuple)
def on_fncallback(self,tup):
option,arg = tup
self.fns[option](arg)
@pyqtSlot(str)
def on_textready(self,text):
# Function to send text from client thread to GUI thread
# Format of text: <Obj>:<Message>
obj = text[0:4]
msg = text[5:]
if obj=='Log1':
if len(self.logs) > self.max_log_lines:
self.logs.pop(0)
self.logs.append(msg)
log_text = '\n'.join(self.logs)
self.log_window1.setText(log_text)
if obj=='Log2':
if len(self.logs2) > self.max_log2_lines:
self.logs2.pop(0)
self.logs2.append(msg)
log_text = '\n'.join(self.logs2)
self.log_window2.setPlainText(log_text)
self.log_window2.verticalScrollBar().setValue(
self.log_window2.verticalScrollBar().maximum())
if obj=='Sta2':
self.statusbar.setText(msg)
@pyqtSlot(int)
def update_log_bar(self,val):
self.progressBar.setValue(val)
#self.progressBar.setTextVisible(val != 0)
@pyqtSlot(int)
def update_log_bar2(self,val):
self.progressBar2.setValue(val)
#self.progressBar2.setTextVisible(val != 0)
@pyqtSlot(int)
def on_elapsed(self,val):
if self.tabWidget.currentIndex()==0:
self.update_log_window('Elapsed: '+str(val)+'s',mode='overwrite')
else:
pass # No elapsed time for tab2
@pyqtSlot(np.ndarray)
def on_inferThread_complete(self,wav):
global _running1
_mutex1.lock()
_running1 = False
_mutex1.unlock()
self.playback_wav(wav)
self.TTSDialogButton.setEnabled(True)
self.TTModelCombo.setEnabled(True)
self.WGModelCombo.setEnabled(True)
self.TTSTextEdit.setEnabled(True)
self.LoadTTButton.setEnabled(True)
self.LoadWGButton.setEnabled(True)
self.tab_2.setEnabled(True)
elapsed = (time.time() - self.t_1)
wav_length = (len(wav) / self.hparams.sampling_rate)
rtf = elapsed / wav_length
line = 'Generated {:.1f}s of audio in {:.1f}s ({:.2f} real-time factor)'.format(wav_length,elapsed,rtf)
self.update_log_window(line,'overwrite')
tps = elapsed / len(wav)
print(" > Run-time: {}".format(elapsed))
print(" > Real-time factor: {}".format(rtf))
print(" > Time per step: {}".format(tps))
self.update_status_bar("Ready")
# TODO get pygame mixer callback on end or use sounddevice
@pyqtSlot(tuple)
def on_itersignal(self,tup):
# Displays current iteration on progress bar
current,total = tup
self.progressBarLabel.setText('{}/{}'.format(current,total))
@pyqtSlot()
def on_interrupt(self):
# Reenable buttons
self.TTSDialogButton.setEnabled(True)
self.TTModelCombo.setEnabled(True)
self.WGModelCombo.setEnabled(True)
self.TTSTextEdit.setEnabled(True)
self.LoadTTButton.setEnabled(True)
self.LoadWGButton.setEnabled(True)
self.tab_2.setEnabled(True)
# Refresh progress bar
self.update_log_bar(0)
self.progressBarLabel.setText('')
# Write to log window
self.update_log_window('Interrupted','overwrite')
# Write to status bar
self.update_status_bar("Ready")
def fns_gui_startpolling(self,arg=None):
self.ClientStartBtn.setDisabled(True)
self.ClientStopBtn.setEnabled(True)
self.tab.setDisabled(True)
self.tab_3.setDisabled(True)
self.ClientAmountLine.setDisabled(True)
def fns_gui_endpolling(self,arg=None):
self.update_log_bar2(0)
self.progressBar2Label.setText('')
self.ClientStartBtn.setEnabled(True)
self.ClientStopBtn.setDisabled(True)
self.ClientSkipBtn.setDisabled(True)
self.tab.setEnabled(True)
self.tab_3.setEnabled(True)
self.ClientAmountLine.setEnabled(True)
def fns_wav_playback(self,wav):
if self.tabWidget.currentIndex()==0:
self.TTSStopButton.setEnabled(True)
else:
self.ClientSkipBtn.setEnabled(True)
if wav.dtype != np.int16 :
# Convert from float32 or float16 to signed int16 for pygame
wav = (wav/np.amax(wav) * 32767).astype(np.int16)
sound = pygame.mixer.Sound(wav)
self.channel.queue(sound)
def fns_var_offset(self,arg):
self.msg_offset = arg
def fns_var_prevtime(self,arg):
self.prev_time = arg
def fns_gui_pbtext(self,tup):
current,total = tup
self.progressBar2Label.setText('{}/{}'.format(current,total))
def fns_gui_enableclientskipbtn(self,arg=None):
self.ClientSkipBtn.setEnabled(True)
def on_finished(self):
#print("THREAD COMPLETE!")
pass
def on_result(self, s):
#print(s)
pass
def start_eventloop(self):
# Pass the function to execute
global _running2,_running3
if not self.validate_se():
return
if self.reload_model_flag:
self.reload_model()
self.reload_model_flag = False
min_donation = self.get_min_donation()
TOKEN = self.get_token()
_mutex2.lock()
_running2 = True
_mutex2.unlock()
_mutex3.lock()
_running3 = True
_mutex3.unlock()
worker = Worker(self.eventloop, TOKEN, min_donation, self.channel,
self.se_opts, self.use_cuda, self.model, self.waveglow, self.pyt_opts['cpu limit'],
self.msg_offset, self.prev_time, self.startup_time)
# Any other args, kwargs are passed to the run function
worker.signals.result.connect(self.on_result)
worker.signals.finished.connect(self.on_finished)
worker.signals.progress.connect(self.update_log_bar2)
worker.signals.textready.connect(self.on_textready)
worker.signals.elapsed.connect(self.on_elapsed)
worker.signals.fncallback.connect(self.on_fncallback)
# Execute
self.threadpool.start(worker)
def stop_eventloop(self):
global _running2, _running3
_mutex2.lock()
_running2 = False
_mutex2.unlock()
_mutex3.lock()
_running3 = False
_mutex3.unlock()
self.skip_wav()
def skip_eventloop(self):
global _running3
_mutex3.lock()
_running3 = False
_mutex3.unlock()
self.skip_wav()
def eventloop(self, TOKEN, min_donation, channel, se_opts,
use_cuda, model, waveglow, num_thread,
offset, prev_time, startup_time,
progress_callback, elapsed_callback, text_ready, fn_callback):
# TODO: refactor this messy block
global _running3
if num_thread:
torch.set_num_threads(num_thread)
os.environ['OMP_NUM_THREADS'] = str(num_thread)
os.environ['MKL_NUM_THREADS'] = str(num_thread)
fn_callback.emit(('GUI: start of polling loop',None))
text_ready.emit("Sta2:Connecting to StreamElements")
url = "https://api.streamelements.com/kappa/v2/tips/"+self.channel_id
headers = {'accept': 'application/json',"Authorization": "Bearer "+TOKEN}
text_ready.emit('Log2:Initializing')
text_ready.emit('Log2:Minimum amount for TTS: '+str(min_donation))
while True:
_mutex2.lock()
if _running2 == False:
_mutex2.unlock()
break
else:
_mutex2.unlock()
if not channel.get_busy():
#print('Polling', datetime.datetime.utcnow().isoformat())
text_ready.emit("Sta2:Waiting for incoming donations . . .")
current_time = datetime.datetime.utcnow().isoformat()
# TODO: possible bug: missed donations once time pasts midnight
querystring = {"offset":offset,
"limit":"1",
"sort":"createdAt",
"after":startup_time,
"before":current_time}
response = requests.request("GET", url, headers=headers, params=querystring)
data = json.loads(response.text)
for dono in data['docs']:
text_ready.emit("Sta2:Processing donations")
dono_time = dono['createdAt']
offset += 1
if dono_time > prev_time: # Str comparison
amount = dono['donation']['amount'] # Int
if se_opts['approve only'] == 2:
approved = dono['approved']=='allowed'
else:
approved = True
if float(amount) >= min_donation and approved:
_mutex3.lock()
if not _running3:
_running3 = True
_mutex3.unlock()
fn_callback.emit(('GUI: reenable skip btn',None))
name = dono['donation']['user']['username']
msg = dono['donation']['message']
if msg.isspace(): break # Check for empty line
## TODO Allow multiple speaker in msg
currency = dono['donation']['currency']
dono_id = dono['_id']
text_ready.emit("Log2:\n###########################")
text_ready.emit("Log2:"+name+' donated '+currency+str(amount))
text_ready.emit("Log2:"+msg)
lines = preprocess_text(msg)
if se_opts['read dono amount'] == 2: # reads dono name and amount
msg = '{} donated {} {}.'.format(name,
str(amount),
cleaners.expand_currency(currency))
lines.insert(0,msg) # Add to head to list
output = []
for count, line in enumerate(lines):
fn_callback.emit(('GUI: progress bar 2 text', (count,len(lines))))
sequence = np.array(text_to_sequence(line, ['english_cleaners']))[None, :]
# Inference
device = torch.device('cuda' if use_cuda else 'cpu')
sequence = torch.autograd.Variable(
torch.from_numpy(sequence)).to(device).long()
# Decode text input
mel_outputs, mel_outputs_postnet, _, alignments = model.inference(sequence)
with torch.no_grad():
audio = waveglow.infer(mel_outputs_postnet,
sigma=0.666,
progress_callback = progress_callback,
elapsed_callback = None,
get_interruptflag = self.get_interruptflag2)
if type(audio) != torch.Tensor:
# Catches when waveglow is interrupted and returns none
break
fn_callback.emit(('GUI: progress bar 2 text', (count+1,len(lines))))
wav = audio[0].data.cpu().numpy()
output.append(wav)
_mutex3.lock()
if _running3 == True:
_mutex3.unlock()
outwav = np.concatenate(output)
# Playback
fn_callback.emit(('Wav: playback',outwav))
else: _mutex3.unlock()
prev_time = dono_time # Increment time
time.sleep(0.5)
fn_callback.emit(('GUI: end of polling loop',None))
text_ready.emit('Log2:\nDisconnected')
text_ready.emit('Sta2:Ready')
fn_callback.emit(('Var: offset', offset))
fn_callback.emit(('Var: prev_time', prev_time))
return #'Return value of execute_this_fn'
def startup_update(self):
if not self.tab_2.isEnabled():
self.tab_2.setEnabled(True)
if not self.TTSDialogButton.isEnabled():
self.TTSDialogButton.setEnabled(True)
def playback_wav(self,wav):
if self.tabWidget.currentIndex()==1:
self.ClientSkipBtn.setEnabled(True)
if wav.dtype != np.int16 :
# Convert from float32 or float16 to signed int16 for pygame
wav = (wav/np.amax(wav) * 32767).astype(np.int16)
sound = pygame.mixer.Sound(wav)
self.channel.queue(sound)
# TODO Disable skip btn on playback end
def skip_wav(self):
if self.channel.get_busy():
self.channel.stop()
self.ClientSkipBtn.setDisabled(True)
def skip_infer_playback(self):
global _running1
if self.channel.get_busy():
self.channel.stop()
_mutex1.lock() # We could also use a signal/slot mechanism
if _running1:
self.progressBarLabel.setText('Interrupting...')
_running1 = False # instead of mutex since inference is on QThread
_mutex1.unlock()
self.TTSStopButton.setDisabled(True)
def reload_model(self):
TTmodel_fpath = self.get_current_TTmodel_dir()
WGmodel_fpath = self.get_current_WGmodel_dir()
# Setup hparams
self.hparams = create_hparams()
self.hparams.sampling_rate = 22050
# Load Tacotron 2 from checkpoint
self.model = load_model(self.hparams,self.use_cuda)
device = torch.device('cuda' if self.use_cuda else 'cpu')
self.model.load_state_dict(torch.load(TTmodel_fpath, map_location = device)['state_dict'])
if self.use_cuda:
_ = self.model.cuda().eval().half()
else:
_ = self.model.eval()
# Load WaveGlow for mel2audio synthesis and denoiser
self.waveglow = torch.load(WGmodel_fpath, map_location = device)['model']
self.waveglow.use_cuda = self.use_cuda
if self.use_cuda:
self.waveglow.cuda().eval().half()
else:
self.waveglow.eval()
for k in self.waveglow.convinv:
k.float()
#denoiser = Denoiser(waveglow,use_cuda=self.use_cuda)
def start_synthesis(self):
# Runs in main gui thread. Synthesize blocks gui.
# Can update gui directly in this function.
text = self.TTSTextEdit.toPlainText()
if text.isspace():return
global _running1
self.t_1 = time.time()
self.TTSDialogButton.setDisabled(True)
self.TTModelCombo.setDisabled(True)
self.WGModelCombo.setDisabled(True)
self.TTSTextEdit.setDisabled(True)
self.LoadTTButton.setDisabled(True)
self.LoadWGButton.setDisabled(True)
self.TTSStopButton.setEnabled(True)
self.tab_2.setDisabled(True)
self.update_log_bar(0)
self.update_log_window('Initializing','clear')
self.update_status_bar("Creating voice")
# We use a signal callback here to stick to the same params type in synthesize.py
if self.reload_model_flag:
self.reload_model()
self.reload_model_flag = False
# Prepare text input
_mutex1.lock()
_running1 = True
_mutex1.unlock()
self.current_thread = inferThread(text,
self.use_cuda,
self.model,
self.waveglow,
self.signals.progress,
None,
self.t_1,
self.pyt_opts['cpu limit'],
parent = self)
self.current_thread.audioSignal.connect(self.on_inferThread_complete)
self.current_thread.timeElapsed.connect(self.on_elapsed)
self.current_thread.iterSignal.connect(self.on_itersignal)
self.current_thread.interruptSignal.connect(self.on_interrupt)
def validate_se(self):
# Connect to streamelement and saves channel id
# return true if chn id and token returns valid
# Test Channel ID
self.update_status_bar("Validating StreamElements")
CHANNEL_NAME = ''.join(self.ChannelName.text().split())
url = "https://api.streamelements.com/kappa/v2/channels/"+CHANNEL_NAME
response = requests.request("GET", url, headers={'accept': 'application/json'})
if response.status_code == 200:
# Test JWT Token
self.channel_id = json.loads(response.text)['_id']
url = "https://api.streamelements.com/kappa/v2/tips/"+self.channel_id
querystring = {"offset":"0","limit":"10","sort":"createdAt","after":"0","before":"0"}
TOKEN = self.get_token()
headers = {'accept': 'application/json',"Authorization": "Bearer "+TOKEN}
response2 = requests.request("GET", url, headers=headers, params=querystring)
if response2.status_code == 200:
self.update_log_window_2("\nConnected to "+CHANNEL_NAME)
return True
else:
self.update_log_window_2("\nError: Double check your token")
self.update_status_bar("Invalid StreamElements")
print(response2.text)
else:
self.update_log_window_2("\nError: Double check your channel name")
self.update_status_bar("Invalid StreamElements")
print(response.text)
return False
def get_min_donation(self):
return float(self.ClientAmountLine.value())
def get_token(self):
#TOKEN = ''.join(self.APIKeyLine.text().split())
#return TOKEN
tokenobj = TOKEN() # for debugging
return tokenobj.token # for debugging
def get_current_TTmodel_dir(self):
return self.TTmodel_dir[self.TTModelCombo.currentIndex()]
def get_current_WGmodel_dir(self):
return self.WGmodel_dir[self.WGModelCombo.currentIndex()]
def get_current_TTmodel_fname(self):
return self.TTModelCombo.currentText()
def get_current_WGmodel_fname(self):
return self.WGModelCombo.currentText()
def get_interruptflag2(self):
_mutex3.lock()
val = _running3
_mutex3.unlock()
return val
def set_reload_model_flag(self):
self.reload_model_flag = True
def set_cuda(self):
self.use_cuda = self.GpuSwitch.isChecked()
self.reload_model_flag = True
def add_TTmodel_path(self):
fpath = str(QFileDialog.getOpenFileName(self,
'Select Tacotron2 model',
filter='*.pt')[0])
if not fpath: # If no folder selected
return
if fpath not in self.TTmodel_dir:
head,tail = os.path.split(fpath) # Split into parent and child dir
self.TTmodel_dir.append(fpath) # Save full path
self.populate_modelcombo(tail, self.TTModelCombo)
self.update_log_window("Added Tacotron 2 model: "+tail)
if self.WGModelCombo.count() > 0:
self.startup_update()
def add_WGmodel_path(self):
fpath = str(QFileDialog.getOpenFileName(self,
'Select Waveglow model',
filter='*.pt')[0])
if not fpath: # If no folder selected
return
if fpath not in self.WGmodel_dir:
head,tail = os.path.split(fpath) # Split into parent and child dir
self.WGmodel_dir.append(fpath) # Save full path
self.populate_modelcombo(tail, self.WGModelCombo)
self.update_log_window("Added Waveglow model: "+tail)
if self.TTModelCombo.count() > 0:
self.startup_update()
def populate_modelcombo(self, item, combobox):
combobox.addItem(item)
combobox.setCurrentIndex(combobox.count()-1)
if not combobox.isEnabled():
combobox.setEnabled(True)
def update_log_window(self, line, mode="newline"):
if mode == "newline" or not self.logs:
self.logs.append(line)
if len(self.logs) > self.max_log_lines:
del self.logs[0]
elif mode == "append":
self.logs[-1] += line
elif mode == "overwrite":
self.logs[-1] = line
elif mode == "clear":
self.logs = [line]
log_text = '\n'.join(self.logs)
self.log_window1.setText(log_text)
def update_log_window_2(self, line, mode="newline"):
if mode == "newline" or not self.logs2:
self.logs2.append(line)
elif mode == "append":
self.logs2[-1] += line
elif mode == "overwrite":
self.logs2[-1] = line
log_text = '\n'.join(self.logs2)
self.log_window2.setPlainText(log_text)
self.log_window2.verticalScrollBar().setValue(
self.log_window2.verticalScrollBar().maximum())
def update_status_bar(self, line):
self.statusbar.setText(line)
class inferThread(QThread):
timeElapsed = pyqtSignal(int)
audioSignal = pyqtSignal(np.ndarray)
iterSignal = pyqtSignal(tuple)
interruptSignal = pyqtSignal()
def __init__(self, text, use_cuda, model, waveglow,
progress, elapsed, timestart, num_thread, parent=None):
super(inferThread, self).__init__(parent)
self.text = text
self.use_cuda = use_cuda
self.model = model
self.waveglow = waveglow
self.progress = progress
self.elapsed = elapsed
self.num_thread = num_thread
self.timeoffset = time.time()-timestart
self.timerThread = timerThread(self.timeoffset, parent = self)
self.timerThread.timeElapsed.connect(self.timeElapsed.emit)
self.start()
def run(self):
self.timerThread.start(time.time())
if self.num_thread:
torch.set_num_threads(self.num_thread)
os.environ['OMP_NUM_THREADS'] = str(self.num_thread)
os.environ['MKL_NUM_THREADS'] = str(self.num_thread)
lines = preprocess_text(self.text)
output = []
for count,line in enumerate(lines):
_mutex1.lock()
if _running1 == False:
_mutex1.unlock()
self.interruptSignal.emit()
return
else:
_mutex1.unlock()
self.iterSignal.emit((count,len(lines)))
sequence = np.array(text_to_sequence(line, ['english_cleaners']))[None, :]
device = torch.device('cuda' if self.use_cuda else 'cpu')
sequence = torch.autograd.Variable(
torch.from_numpy(sequence)).to(device).long()
# Decode text input
mel_outputs, mel_outputs_postnet, _, alignments = self.model.inference(sequence)
with torch.no_grad():
audio = self.waveglow.infer(mel_outputs_postnet,
sigma=0.666,
progress_callback = self.progress,
elapsed_callback = self.elapsed,
get_interruptflag = self.get_interruptflag)
if type(audio) != torch.Tensor:
# Catches when waveglow is interrupted and returns none
self.interruptSignal.emit()
return
self.iterSignal.emit((count+1,len(lines)))
wav = audio[0].data.cpu().numpy()
output.append(wav)
outwav = np.concatenate(output)
self.audioSignal.emit(outwav)
def get_interruptflag(self):
_mutex1.lock()
val = _running1
_mutex1.unlock()
return val
if __name__ == '__main__':
app = Qt.QApplication(sys.argv)
window = GUI(app)
window.show()
sys.exit(app.exec_())