Official Pytorch Code base for "Delineation of agricultural fields using multi-task BsiNet from high-resolution satellite images"
This paper presents a new multi-task neural network BsiNet to delineate agricultural fields from remote sensing images. BsiNet learns three tasks, i.e., a core task for agricultural field identification and two auxiliary tasks for field boundary prediction and distance estimation, corresponding to mask, boundary, and distance tasks, respectively.
The code is stable while using Python 3.7.0, CUDA >=11.0
- Clone this repository:
git clone https://github.com/long123524/BsiNet-torch
cd BsiNet-torch
To install all the dependencies using conda or pip:
PyTorch
TensorboardX
OpenCV
numpy
tqdm
Using the code preprocess.py to obtain contour and distance maps.
Make sure to put the files as the following structure:
inputs
└── <train>
├── image
| ├── 001.tif
│ ├── 002.tif
│ ├── 003.tif
│ ├── ...
|
└── mask
| ├── 001.tif
| ├── 002.tif
| ├── 003.tif
| ├── ...
└── contour
| ├── 001.tif
| ├── 002.tif
| ├── 003.tif
| ├── ...
└── dist_contour
| ├── 001.tif
| ├── 002.tif
| ├── 003.tif
└── ├── ...
For test and validation datasets, the same structure as the above.
- Train the model.
python train.py --train_path ./fields/image --save_path ./model --model_type 'bsinet' --distance_type 'dist_contour'
- Evaluate.
python test.py --model_file ./model/150.pt --save_path ./save --model_type 'bsinet' --distance_type 'dist_contour' --val_path ./test_image
If you have any questions, you can contact us: Jiang long, hnzzyxlj@163.com and Mengmeng Li, mli@fzu.edu.cn.
A GF2 image (1m) is provided for scientific use: https://pan.baidu.com/s/1isg9jD9AlE9EeTqa3Fqrrg, password:bzfd Google drive:https://drive.google.com/file/d/1JZtRSxX5PaT3JCzvCLq2Jrt0CBXqZj7c/view?usp=drive_link A corresponding partial field label is provided for scientific study: https://drive.google.com/file/d/19OrVPkb0MkoaUvaax_9uvnJgSr_dcSSW/view?usp=sharing
A pretrained weight on a Xinjiang GF-2 image is provided: https://pan.baidu.com/s/1asAMj4_ZrIQeJiewP2LpqA password:rz8k Google drive: https://drive.google.com/drive/folders/121T8FjiyEsIbfyLUbrBXYCg75PIzCzRX?usp=sharing
This code-base uses certain code-blocks and helper functions from Psi-Net
If you find this work useful or interesting, please consider citing the following references.
Citation 1:
{Authors: Long Jiang (龙江), Li Mengmeng* (李蒙蒙), Wang Xiaoqin (汪小钦), et al;
Institute: The Academy of Digital China (Fujian), Fuzhou University,
Article Title: Delineation of agricultural fields using multi-task BsiNet from high-resolution satellite images,
Publication: International Journal of Applied Earth Observation and Geoinformation,
Year: 2022,
Volume:112
Page: 102871,
DOI: 10.1016/j.jag.2022.102871
}
Citation 2:
{Authors: Li Mengmeng* (李蒙蒙), Long Jiang (龙江), et al;
Institute: The Academy of Digital China (Fujian), Fuzhou University,
Article Title: Using a semantic edge-aware multi-task neural network to delineate agricultural parcels from remote sensing images,
Publication: ISPRS Journal of Photogrammetry and Remote Sensing,
Year: 2023,
Volume:200
Page: 24-40,
DOI: 10.1016/j.isprsjprs.2023.04.019
}