forked from canghailan/Wuhan-2019-nCoV
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parse.py
161 lines (141 loc) · 5.83 KB
/
parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import re
import pandas as pd
import yaml
from metadata import get_country_code, get_china_province_code, get_china_city_code, get_china_area_name
def read_report(fp):
with open(fp, "r") as f:
return yaml.load(f, Loader=yaml.Loader)
def parse_int(text):
if text:
result = re.search("\\d+", text)
if result:
return result.group()
def parse_list(text, keys):
if text:
result = []
for i in re.finditer("([\u4e00-\u9fa5]+)(\\d+)", text):
result.append({
keys[0]: i.group(1),
keys[1]: i.group(2)
})
return result
def parse_report(report):
date = str(report["时间"])
province = report.get("省", "")
confirmed = parse_int(report.get("确诊"))
suspected = parse_int(report.get("疑似"))
cured = parse_int(report.get("治愈"))
dead = parse_int(report.get("死亡"))
area_key = "city" if province else "province"
confirmed_list = parse_list(report.get("确诊详情"), [area_key, "confirmed"])
suspected_list = parse_list(report.get("疑似详情"), [area_key, "suspected"])
cured_list = parse_list(report.get("治愈详情"), [area_key, "cured"])
dead_list = parse_list(report.get("死亡详情"), [area_key, "dead"])
foreign_confirmed_list = parse_list(report.get("国外确诊详情"), ["country", "confirmed"])
foreign_cured_list = parse_list(report.get("国外治愈详情"), ["country", "cured"])
provinceCode = get_china_province_code(province) if province else ""
province = get_china_area_name(provinceCode, province) if provinceCode else ""
data = {
"provinceCode": provinceCode,
"province": province,
"confirmed": confirmed,
"suspected": suspected,
"cured": cured,
"dead": dead
}
for data_list in [confirmed_list, suspected_list, cured_list, dead_list]:
if data_list:
for x in data_list:
if province:
x["provinceCode"] = provinceCode
x["province"] = province
x["cityCode"] = get_china_city_code(provinceCode, x["city"])
x["city"] = get_china_area_name(x["cityCode"], x["city"])
else:
x["provinceCode"] = get_china_province_code(x["province"])
x["province"] = get_china_area_name(x["provinceCode"], x["province"])
df_list = [pd.DataFrame(x) for x in [confirmed_list, suspected_list, cured_list, dead_list] if x]
df = None
for index, x in enumerate(df_list):
if df is None:
df = x
else:
df = pd.merge(df, x, on=area_key, how="outer", suffixes=["", f"""_{index}"""], sort=False, copy=False)
columns = [
"date",
"country",
"countryCode",
"province",
"provinceCode",
"city",
"cityCode",
"confirmed",
"suspected",
"cured",
"dead"
]
if df is None:
df = pd.DataFrame([data], columns=columns)
else:
df = pd.DataFrame(df, columns=columns)
df = df.append([data])
df["country"] = "中国"
df["countryCode"] = "CN"
df["province"].fillna(province, inplace=True)
df["provinceCode"].fillna(provinceCode, inplace=True)
df["city"].fillna("", inplace=True)
df["cityCode"].fillna("", inplace=True)
df["provinceCode"] = df["province"].map(get_china_province_code)
df["cityCode"] = df.apply(
lambda x: get_china_city_code(x.provinceCode, x.city), axis=1)
for data_list in [foreign_confirmed_list, foreign_cured_list]:
if data_list:
for x in data_list:
x["countryCode"] = get_country_code(x["country"])
foreign_df = None
foreign_df_list = [pd.DataFrame(x) for x in [foreign_confirmed_list, foreign_cured_list] if x]
for index, x in enumerate(foreign_df_list):
if foreign_df is None:
foreign_df = x
else:
foreign_df = pd.merge(foreign_df, x, on="country", how="outer", suffixes=["", f"""_{index}"""], sort=False, copy=False)
if foreign_df is not None:
df = pd.concat([df, pd.DataFrame(foreign_df, columns=columns)], sort=False)
df["date"] = date
df.sort_values(["date", "countryCode", "provinceCode", "cityCode", "city"], inplace=True)
return df
parse_date = "2020-01-25"
for r in os.listdir("Report"):
try:
report = read_report(os.path.join("Report", r))
if str(report["时间"]) >= parse_date:
report_data = parse_report(report)
report_data.to_csv(f"""ReportData/{report.get("时间")}{report.get("省", "")}.csv""", index=False)
except Exception as e:
print(r)
raise e
# 合并通报数据
csv_file = "Wuhan-2019-nCoV.csv"
json_file = "Wuhan-2019-nCoV.json"
xlsx_file = "Wuhan-2019-nCoV.xlsx"
dtype = {"provinceCode": str, "cityCode": str}
df = pd.read_csv(csv_file, dtype=dtype)
report_df_list = [pd.read_csv(os.path.join("ReportData", x), dtype=dtype) for x in sorted(os.listdir("ReportData"))]
df = pd.concat([df] + report_df_list, sort=False)
df["country"].fillna("", inplace=True)
df["countryCode"].fillna("", inplace=True)
df["province"].fillna("", inplace=True)
df["provinceCode"].fillna("", inplace=True)
df["city"].fillna("", inplace=True)
df["cityCode"].fillna("", inplace=True)
df["confirmed"] = df["confirmed"].fillna(0).astype(int)
df["suspected"] = df["suspected"].fillna(0).astype(int)
df["cured"] = df["cured"].fillna(0).astype(int)
df["dead"] = df["dead"].fillna(0).astype(int)
df.drop_duplicates(
subset=["date", "country", "province", "city"], keep="last", inplace=True)
df.sort_values(["date", "countryCode", "provinceCode", "cityCode", "city"], inplace=True)
df.to_csv(csv_file, index=False, encoding='utf-8')
df.to_json(json_file, orient="records", force_ascii=False)
df.to_excel(xlsx_file, index=False)