Skip to content

Latest commit

 

History

History
 
 

grand

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Graph Random Neural Network(GRAND)

This DGL example implements the GNN model proposed in the paper Graph Random Neural Network for Semi-Supervised Learning on Graphs.

Author's code: https://github.com/THUDM/GRAND

Example Implementor

This example was implemented by Hengrui Zhang when he was an applied scientist intern at AWS Shanghai AI Lab.

Dependencies

  • Python 3.7
  • PyTorch 1.7.1
  • dgl 0.5.3

Dataset

The DGL's built-in Cora, Pubmed and Citeseer datasets. Dataset summary:

Dataset #Nodes #Edges #Feats #Classes #Train Nodes #Val Nodes #Test Nodes
Citeseer 3,327 9,228 3,703 6 120 500 1000
Cora 2,708 10,556 1,433 7 140 500 1000
Pubmed 19,717 88,651 500 3 60 500 1000

Arguments

Dataset options
--dataname          str     The graph dataset name.             Default is 'cora'.
GPU options
--gpu              int     GPU index.                          Default is -1, using CPU.
Model options
--epochs           int     Number of training epochs.             Default is 2000.
--early_stopping   int     Early stopping patience rounds.        Default is 200.
--lr               float   Adam optimizer learning rate.          Default is 0.01.
--weight_decay     float   L2 regularization coefficient.         Default is 5e-4.
--dropnode_rate    float   Dropnode rate (1 - keep probability).  Default is 0.5.
--input_droprate   float   Dropout rate of input layer.           Default is 0.5.
--hidden_droprate  float   Dropout rate of hidden layer.          Default is 0.5.
--hid_dim          int     Hidden layer dimensionalities.         Default is 32.
--order            int     Propagation step.                      Default is 8.
--sample           int     Sampling times of dropnode.            Default is 4.
--tem              float   Sharpening temperaturer.               Default is 0.5.
--lam              float   Coefficient of Consistency reg         Default is 1.0.
--use_bn           bool    Using batch normalization.             Default is False

Examples

Train a model which follows the original hyperparameters on different datasets.

# Cora:
python main.py --dataname cora --gpu 0 --lam 1.0 --tem 0.5 --order 8 --sample 4 --input_droprate 0.5 --hidden_droprate 0.5 --dropnode_rate 0.5 --hid_dim 32 --early_stopping 100 --lr 1e-2  --epochs 2000
# Citeseer:
python main.py --dataname citeseer --gpu 0 --lam 0.7 --tem 0.3 --order 2 --sample 2 --input_droprate 0.0 --hidden_droprate 0.2 --dropnode_rate 0.5 --hid_dim 32 --early_stopping 100 --lr 1e-2  --epochs 2000
# Pubmed:
python main.py --dataname pubmed --gpu 0 --lam 1.0 --tem 0.2 --order 5 --sample 4 --input_droprate 0.6 --hidden_droprate 0.8 --dropnode_rate 0.5 --hid_dim 32 --early_stopping 200 --lr 0.2 --epochs 2000 --use_bn

Performance

The hyperparameter setting in our implementation is identical to that reported in the paper.

Dataset Cora Citeseer Pubmed
Accuracy Reported(100 runs) 85.4(±0.4) 75.4(±0.4) 82.7(±0.6)
Accuracy DGL(20 runs) 85.33(±0.41) 75.36(±0.36) 82.90(±0.66)