This DGL example implements the GNN model proposed in the paper Graph Random Neural Network for Semi-Supervised Learning on Graphs.
Author's code: https://github.com/THUDM/GRAND
This example was implemented by Hengrui Zhang when he was an applied scientist intern at AWS Shanghai AI Lab.
- Python 3.7
- PyTorch 1.7.1
- dgl 0.5.3
The DGL's built-in Cora, Pubmed and Citeseer datasets. Dataset summary:
Dataset | #Nodes | #Edges | #Feats | #Classes | #Train Nodes | #Val Nodes | #Test Nodes |
---|---|---|---|---|---|---|---|
Citeseer | 3,327 | 9,228 | 3,703 | 6 | 120 | 500 | 1000 |
Cora | 2,708 | 10,556 | 1,433 | 7 | 140 | 500 | 1000 |
Pubmed | 19,717 | 88,651 | 500 | 3 | 60 | 500 | 1000 |
--dataname str The graph dataset name. Default is 'cora'.
--gpu int GPU index. Default is -1, using CPU.
--epochs int Number of training epochs. Default is 2000.
--early_stopping int Early stopping patience rounds. Default is 200.
--lr float Adam optimizer learning rate. Default is 0.01.
--weight_decay float L2 regularization coefficient. Default is 5e-4.
--dropnode_rate float Dropnode rate (1 - keep probability). Default is 0.5.
--input_droprate float Dropout rate of input layer. Default is 0.5.
--hidden_droprate float Dropout rate of hidden layer. Default is 0.5.
--hid_dim int Hidden layer dimensionalities. Default is 32.
--order int Propagation step. Default is 8.
--sample int Sampling times of dropnode. Default is 4.
--tem float Sharpening temperaturer. Default is 0.5.
--lam float Coefficient of Consistency reg Default is 1.0.
--use_bn bool Using batch normalization. Default is False
Train a model which follows the original hyperparameters on different datasets.
# Cora:
python main.py --dataname cora --gpu 0 --lam 1.0 --tem 0.5 --order 8 --sample 4 --input_droprate 0.5 --hidden_droprate 0.5 --dropnode_rate 0.5 --hid_dim 32 --early_stopping 100 --lr 1e-2 --epochs 2000
# Citeseer:
python main.py --dataname citeseer --gpu 0 --lam 0.7 --tem 0.3 --order 2 --sample 2 --input_droprate 0.0 --hidden_droprate 0.2 --dropnode_rate 0.5 --hid_dim 32 --early_stopping 100 --lr 1e-2 --epochs 2000
# Pubmed:
python main.py --dataname pubmed --gpu 0 --lam 1.0 --tem 0.2 --order 5 --sample 4 --input_droprate 0.6 --hidden_droprate 0.8 --dropnode_rate 0.5 --hid_dim 32 --early_stopping 200 --lr 0.2 --epochs 2000 --use_bn
The hyperparameter setting in our implementation is identical to that reported in the paper.
Dataset | Cora | Citeseer | Pubmed |
---|---|---|---|
Accuracy Reported(100 runs) | 85.4(±0.4) | 75.4(±0.4) | 82.7(±0.6) |
Accuracy DGL(20 runs) | 85.33(±0.41) | 75.36(±0.36) | 82.90(±0.66) |