forked from zhezh/DeepSense
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeepSense_HHAR_tf.py
296 lines (234 loc) · 13.7 KB
/
deepSense_HHAR_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import tensorflow as tf
import numpy as np
import plot
import time
import math
import os
import sys
from har_tfrecord_util import input_pipeline_har
layers = tf.contrib.layers
# todo: change the path to your own data folder path
TF_RECORD_PATH = r'/home/username/pycharm/DeepSense/sepHARData_a'
SEPCTURAL_SAMPLES = 10
FEATURE_DIM = SEPCTURAL_SAMPLES*6*2
CONV_LEN = 3
CONV_LEN_INTE = 3#4
CONV_LEN_LAST = 3#5
CONV_NUM = 64
CONV_MERGE_LEN = 8
CONV_MERGE_LEN2 = 6
CONV_MERGE_LEN3 = 4
CONV_NUM2 = 64
INTER_DIM = 120
OUT_DIM = 6#len(idDict)
WIDE = 20
CONV_KEEP_PROB = 0.8
BATCH_SIZE = 64
TOTAL_ITER_NUM = 1000000000
select = 'a'
metaDict = {'a':[119080, 1193], 'b':[116870, 1413], 'c':[116020, 1477]}
TRAIN_SIZE = metaDict[select][0]
EVAL_DATA_SIZE = metaDict[select][1]
EVAL_ITER_NUM = int(math.ceil(EVAL_DATA_SIZE / BATCH_SIZE))
###### Import training data
def read_audio_csv(filename_queue):
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
defaultVal = [[0.] for idx in range(WIDE*FEATURE_DIM + OUT_DIM)]
fileData = tf.decode_csv(value, record_defaults=defaultVal)
features = fileData[:WIDE*FEATURE_DIM]
features = tf.reshape(features, [WIDE, FEATURE_DIM])
labels = fileData[WIDE*FEATURE_DIM:]
return features, labels
def input_pipeline(filenames, batch_size, shuffle_sample=True, num_epochs=None):
filename_queue = tf.train.string_input_producer(filenames, shuffle=shuffle_sample)
# filename_queue = tf.train.string_input_producer(filenames, num_epochs=TOTAL_ITER_NUM*EVAL_ITER_NUM*10000000, shuffle=shuffle_sample)
example, label = read_audio_csv(filename_queue)
min_after_dequeue = 1000#int(0.4*len(csvFileList)) #1000
capacity = min_after_dequeue + 3 * batch_size
if shuffle_sample:
example_batch, label_batch = tf.train.shuffle_batch(
[example, label], batch_size=batch_size, num_threads=16, capacity=capacity,
min_after_dequeue=min_after_dequeue)
else:
example_batch, label_batch = tf.train.batch(
[example, label], batch_size=batch_size, num_threads=16)
return example_batch, label_batch
######
# def batch_norm_layer(inputs, phase_train, scope=None):
# return tf.cond(phase_train,
# lambda: layers.batch_norm(inputs, is_training=True, scale=True,
# updates_collections=None, scope=scope),
# lambda: layers.batch_norm(inputs, is_training=False, scale=True,
# updates_collections=None, scope=scope, reuse = True))
def batch_norm_layer(inputs, phase_train, scope=None):
if phase_train:
return layers.batch_norm(inputs, is_training=True, scale=True,
updates_collections=None, scope=scope)
else:
return layers.batch_norm(inputs, is_training=False, scale=True,
updates_collections=None, scope=scope, reuse = True)
def deepSense(inputs, train, reuse=False, name='deepSense'):
with tf.variable_scope(name, reuse=reuse) as scope:
used = tf.sign(tf.reduce_max(tf.abs(inputs), reduction_indices=2)) #(BATCH_SIZE, WIDE)
length = tf.reduce_sum(used, reduction_indices=1) #(BATCH_SIZE)
length = tf.cast(length, tf.int64)
mask = tf.sign(tf.reduce_max(tf.abs(inputs), reduction_indices=2, keep_dims=True))
mask = tf.tile(mask, [1,1,INTER_DIM]) # (BATCH_SIZE, WIDE, INTER_DIM)
avgNum = tf.reduce_sum(mask, reduction_indices=1) #(BATCH_SIZE, INTER_DIM)
# inputs shape (BATCH_SIZE, WIDE, FEATURE_DIM)
sensor_inputs = tf.expand_dims(inputs, axis=3)
# sensor_inputs shape (BATCH_SIZE, WIDE, FEATURE_DIM, CHANNEL=1)
acc_inputs, gyro_inputs = tf.split(sensor_inputs, num_or_size_splits=2, axis=2)
acc_conv1 = layers.convolution2d(acc_inputs, CONV_NUM, kernel_size=[1, 2*3*CONV_LEN],
stride=[1, 2*3], padding='VALID', activation_fn=None, data_format='NHWC', scope='acc_conv1')
acc_conv1 = batch_norm_layer(acc_conv1, train, scope='acc_BN1')
acc_conv1 = tf.nn.relu(acc_conv1)
acc_conv1_shape = acc_conv1.get_shape().as_list()
acc_conv1 = layers.dropout(acc_conv1, CONV_KEEP_PROB, is_training=train,
noise_shape=[acc_conv1_shape[0], 1, 1, acc_conv1_shape[3]], scope='acc_dropout1')
acc_conv2 = layers.convolution2d(acc_conv1, CONV_NUM, kernel_size=[1, CONV_LEN_INTE],
stride=[1, 1], padding='VALID', activation_fn=None, data_format='NHWC', scope='acc_conv2')
acc_conv2 = batch_norm_layer(acc_conv2, train, scope='acc_BN2')
acc_conv2 = tf.nn.relu(acc_conv2)
acc_conv2_shape = acc_conv2.get_shape().as_list()
acc_conv2 = layers.dropout(acc_conv2, CONV_KEEP_PROB, is_training=train,
noise_shape=[acc_conv2_shape[0], 1, 1, acc_conv2_shape[3]], scope='acc_dropout2')
acc_conv3 = layers.convolution2d(acc_conv2, CONV_NUM, kernel_size=[1, CONV_LEN_LAST],
stride=[1, 1], padding='VALID', activation_fn=None, data_format='NHWC', scope='acc_conv3')
acc_conv3 = batch_norm_layer(acc_conv3, train, scope='acc_BN3')
acc_conv3 = tf.nn.relu(acc_conv3)
acc_conv3_shape = acc_conv3.get_shape().as_list()
acc_conv_out = tf.reshape(acc_conv3, [acc_conv3_shape[0], acc_conv3_shape[1], 1, acc_conv3_shape[2],acc_conv3_shape[3]])
gyro_conv1 = layers.convolution2d(gyro_inputs, CONV_NUM, kernel_size=[1, 2*3*CONV_LEN],
stride=[1, 2*3], padding='VALID', activation_fn=None, data_format='NHWC', scope='gyro_conv1')
gyro_conv1 = batch_norm_layer(gyro_conv1, train, scope='gyro_BN1')
gyro_conv1 = tf.nn.relu(gyro_conv1)
gyro_conv1_shape = gyro_conv1.get_shape().as_list()
gyro_conv1 = layers.dropout(gyro_conv1, CONV_KEEP_PROB, is_training=train,
noise_shape=[gyro_conv1_shape[0], 1, 1, gyro_conv1_shape[3]], scope='gyro_dropout1')
gyro_conv2 = layers.convolution2d(gyro_conv1, CONV_NUM, kernel_size=[1, CONV_LEN_INTE],
stride=[1, 1], padding='VALID', activation_fn=None, data_format='NHWC', scope='gyro_conv2')
gyro_conv2 = batch_norm_layer(gyro_conv2, train, scope='gyro_BN2')
gyro_conv2 = tf.nn.relu(gyro_conv2)
gyro_conv2_shape = gyro_conv2.get_shape().as_list()
gyro_conv2 = layers.dropout(gyro_conv2, CONV_KEEP_PROB, is_training=train,
noise_shape=[gyro_conv2_shape[0], 1, 1, gyro_conv2_shape[3]], scope='gyro_dropout2')
gyro_conv3 = layers.convolution2d(gyro_conv2, CONV_NUM, activation_fn=None, kernel_size=[1, CONV_LEN_LAST],
stride=[1, 1], padding='VALID', data_format='NHWC', scope='gyro_conv3')
gyro_conv3 = batch_norm_layer(gyro_conv3, train, scope='gyro_BN3')
gyro_conv3 = tf.nn.relu(gyro_conv3)
gyro_conv3_shape = gyro_conv3.get_shape().as_list()
gyro_conv_out = tf.reshape(gyro_conv3, [gyro_conv3_shape[0], gyro_conv3_shape[1], 1, gyro_conv3_shape[2], gyro_conv3_shape[3]])
sensor_conv_in = tf.concat([acc_conv_out, gyro_conv_out], 2)
senor_conv_shape = sensor_conv_in.get_shape().as_list()
sensor_conv_in = layers.dropout(sensor_conv_in, CONV_KEEP_PROB, is_training=train,
noise_shape=[senor_conv_shape[0], 1, 1, 1, senor_conv_shape[4]], scope='sensor_dropout_in')
sensor_conv1 = layers.convolution2d(sensor_conv_in, CONV_NUM2, kernel_size=[1, 2, CONV_MERGE_LEN],
stride=[1, 1, 1], padding='SAME', activation_fn=None, data_format='NDHWC', scope='sensor_conv1')
sensor_conv1 = batch_norm_layer(sensor_conv1, train, scope='sensor_BN1')
sensor_conv1 = tf.nn.relu(sensor_conv1)
sensor_conv1_shape = sensor_conv1.get_shape().as_list()
sensor_conv1 = layers.dropout(sensor_conv1, CONV_KEEP_PROB, is_training=train,
noise_shape=[sensor_conv1_shape[0], 1, 1, 1, sensor_conv1_shape[4]], scope='sensor_dropout1')
sensor_conv2 = layers.convolution2d(sensor_conv1, CONV_NUM2, kernel_size=[1, 2, CONV_MERGE_LEN2],
stride=[1, 1, 1], padding='SAME', activation_fn=None, data_format='NDHWC', scope='sensor_conv2')
sensor_conv2 = batch_norm_layer(sensor_conv2, train, scope='sensor_BN2')
sensor_conv2 = tf.nn.relu(sensor_conv2)
sensor_conv2_shape = sensor_conv2.get_shape().as_list()
sensor_conv2 = layers.dropout(sensor_conv2, CONV_KEEP_PROB, is_training=train,
noise_shape=[sensor_conv2_shape[0], 1, 1, 1, sensor_conv2_shape[4]], scope='sensor_dropout2')
sensor_conv3 = layers.convolution2d(sensor_conv2, CONV_NUM2, kernel_size=[1, 2, CONV_MERGE_LEN3],
stride=[1, 1, 1], padding='SAME', activation_fn=None, data_format='NDHWC', scope='sensor_conv3')
sensor_conv3 = batch_norm_layer(sensor_conv3, train, scope='sensor_BN3')
sensor_conv3 = tf.nn.relu(sensor_conv3)
sensor_conv3_shape = sensor_conv3.get_shape().as_list()
sensor_conv_out = tf.reshape(sensor_conv3, [sensor_conv3_shape[0], sensor_conv3_shape[1], sensor_conv3_shape[2]*sensor_conv3_shape[3]*sensor_conv3_shape[4]])
gru_cell1 = tf.contrib.rnn.GRUCell(INTER_DIM)
if train:
gru_cell1 = tf.contrib.rnn.DropoutWrapper(gru_cell1, output_keep_prob=0.5)
gru_cell2 = tf.contrib.rnn.GRUCell(INTER_DIM)
if train:
gru_cell2 = tf.contrib.rnn.DropoutWrapper(gru_cell2, output_keep_prob=0.5)
cell = tf.contrib.rnn.MultiRNNCell([gru_cell1, gru_cell2])
init_state = cell.zero_state(BATCH_SIZE, tf.float32)
cell_output, final_stateTuple = tf.nn.dynamic_rnn(cell, sensor_conv_out, sequence_length=length, initial_state=init_state, time_major=False)
sum_cell_out = tf.reduce_sum(cell_output*mask, axis=1, keep_dims=False)
avg_cell_out = sum_cell_out/avgNum
logits = layers.fully_connected(avg_cell_out, OUT_DIM, activation_fn=None, scope='output')
return logits
csvFileList = []
# csvDataFolder1 = os.path.join('sepHARData_'+select, "train")
csvDataFolder1 = os.path.join(r'./sepHARData_a', "train")
orgCsvFileList = os.listdir(csvDataFolder1)
for csvFile in orgCsvFileList:
if csvFile.endswith('.csv'):
csvFileList.append(os.path.join(csvDataFolder1, csvFile))
csvEvalFileList = []
# csvDataFolder2 = os.path.join('sepHARData_'+select, "eval")
csvDataFolder2 = os.path.join(r'./sepHARData_a', "eval")
orgCsvFileList = os.listdir(csvDataFolder2)
for csvFile in orgCsvFileList:
if csvFile.endswith('.csv'):
csvEvalFileList.append(os.path.join(csvDataFolder2, csvFile))
global_step = tf.Variable(0, trainable=False)
########################
# batch_feature, batch_label = input_pipeline(csvFileList, BATCH_SIZE)
# batch_eval_feature, batch_eval_label = input_pipeline(csvEvalFileList, BATCH_SIZE, shuffle_sample=False)
########################
batch_feature, batch_label = input_pipeline_har(os.path.join(TF_RECORD_PATH, 'train.tfrecord'), BATCH_SIZE)
batch_eval_feature, batch_eval_label = input_pipeline_har(os.path.join(TF_RECORD_PATH, 'eval.tfrecord'), BATCH_SIZE, shuffle_sample=False)
# train_status = tf.placeholder(tf.bool)
# trainX = tf.cond(train_status, lambda: tf.identity(batch_feature), lambda: tf.identity(batch_eval_feature))
# trainY = tf.cond(train_status, lambda: tf.identity(batch_label), lambda: tf.identity(batch_eval_label))
# logits = deepSense(trainX, train_status, name='deepSense')
logits = deepSense(batch_feature, True, name='deepSense')
predict = tf.argmax(logits, axis=1)
# batchLoss = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=trainY)
batchLoss = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=batch_label)
loss = tf.reduce_mean(batchLoss)
logits_eval = deepSense(batch_eval_feature, False, reuse=True, name='deepSense')
predict_eval = tf.argmax(logits_eval, axis=1)
loss_eval = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits_eval, labels=batch_eval_label))
t_vars = tf.trainable_variables()
regularizers = 0.
for var in t_vars:
regularizers += tf.nn.l2_loss(var)
loss += 5e-4 * regularizers
# optimizer = tf.train.RMSPropOptimizer(0.001)
# gvs = optimizer.compute_gradients(loss, var_list=t_vars)
# capped_gvs = [(tf.clip_by_norm(grad, 1.0), var) for grad, var in gvs]
# discOptimizer = optimizer.apply_gradients(capped_gvs, global_step=global_step)
discOptimizer = tf.train.AdamOptimizer(
learning_rate=1e-4,
beta1=0.5,
beta2=0.9
).minimize(loss, var_list=t_vars)
with tf.Session() as sess:
tf.global_variables_initializer().run()
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
for iteration in xrange(TOTAL_ITER_NUM):
# _, lossV, _trainY, _predict = sess.run([discOptimizer, loss, trainY, predict], feed_dict = {
# train_status: True
# })
_, lossV, _trainY, _predict = sess.run([discOptimizer, loss, batch_label, predict])
_label = np.argmax(_trainY, axis=1)
_accuracy = np.mean(_label == _predict)
plot.plot('train cross entropy', lossV)
plot.plot('train accuracy', _accuracy)
if iteration % 50 == 49:
dev_accuracy = []
dev_cross_entropy = []
for eval_idx in xrange(EVAL_ITER_NUM):
# eval_loss_v, _trainY, _predict = sess.run([loss, trainY, predict], feed_dict ={train_status: False})
eval_loss_v, _trainY, _predict = sess.run([loss, batch_eval_label, predict_eval])
_label = np.argmax(_trainY, axis=1)
_accuracy = np.mean(_label == _predict)
dev_accuracy.append(_accuracy)
dev_cross_entropy.append(eval_loss_v)
plot.plot('dev accuracy', np.mean(dev_accuracy))
plot.plot('dev cross entropy', np.mean(dev_cross_entropy))
if (iteration < 5) or (iteration % 50 == 49):
plot.flush()
plot.tick()