A Neural Network Image Classifier for Predicting Car Insurance Prices using the PyTorch Python Library.
--- START ---
--- 1. Defining Neural Network ---
--- 2. Datadset Import & Loading & Pre-processing ---
(3722, 11)
--- 3. Training Neural Network Classifier ---
[epoch: 1] loss: 0.836
...
[epoch: 100] loss: 0.758
--- 4. Saving Trained Neural Network Classifier ---
--- 5. Testing Neural Network Classifier ---
--- 6. Evaluating Neural Network Classifier ---
Confusion Matrix
[[280 284]
[136 417]]
Confusion Report: Accuracy, F1 Score and ROC Accuracy:
precision recall f1-score support
0.0 0.67 0.50 0.57 564
1.0 0.59 0.75 0.67 553
accuracy 0.62 1117
macro avg 0.63 0.63 0.62 1117
weighted avg 0.63 0.62 0.62 1117
ROC Accuracy:
0.6252613084016263
Epoch 100 -- Accuracy: 0.6252613084016263
[epoch: 1] loss: 0.645
...
[epoch: 200] loss: 0.678
Confusion Matrix
[[290 274]
[160 393]]
Confusion Report: Accuracy, F1 Score and ROC Accuracy:
precision recall f1-score support
0.0 0.64 0.51 0.57 564
1.0 0.59 0.71 0.64 553
accuracy 0.61 1117
macro avg 0.62 0.61 0.61 1117
weighted avg 0.62 0.61 0.61 1117
ROC Accuracy:
0.612426737460403
--- 7. Finding Optimal Hyperparameters of Neural Network Classifier ---
[skipped]