forked from asappresearch/abcd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
198 lines (162 loc) · 8.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os, sys, pdb
import random
import numpy as np
import torch
from tqdm import tqdm as progress_bar
from utils.arguments import solicit_params
from utils.help import set_seed, setup_gpus, check_directories, prepare_inputs, device
from utils.load import load_data, load_tokenizer, load_candidates, get_optimizer, get_scheduler
from utils.process import process_data, setup_dataloader
from utils.evaluate import quantify, qualify
from components.datasets import ActionDataset, CascadeDataset
from components.tools import ExperienceLogger
from components.models import ActionStateTracking, CascadeDialogSuccess
def run_main(args, datasets, model, exp_logger):
if args.task == 'cds':
utt_data = load_candidates(args)
model.add_candidate_data(*utt_data)
kb_labels = {}
if args.use_kb:
kb_labels['intent'] = list(model.mappings['intent'].keys())
kb_labels['action'] = list(model.mappings['action'].keys())
exp_logger.init_tb_writers()
checkpoint_folder = f'{args.prefix}_{args.filename}_{args.model_type}_{args.suffix}'
ckpt_dir = os.path.join(args.output_dir, args.task, checkpoint_folder)
filepath = os.path.join(ckpt_dir, 'pytorch_model.pt')
#print('loading model from checkpoint...')
#model.encoder.load_state_dict(torch.load(filepath), strict=False)
run_train(args, datasets, model, exp_logger, kb_labels)
if args.do_eval:
result = run_eval(args, datasets, model, exp_logger, kb_labels, split='test')
results = dict((k + f'_{args.filename}', v) for k, v in result.items())
print('Test Results -', results)
def ast_loss(scores, targets, loss_func):
action_score, value_score = scores
action_target, value_target = targets
action_loss = loss_func(action_score, action_target)
value_loss = loss_func(value_score, value_target)
total_loss = action_loss + value_loss
return total_loss
def cds_loss(scores, targets, loss_func):
intent_scores, nextstep_scores, action_scores, value_scores, utt_scores = scores
intent_target, nextstep_target, action_target, value_target, utt_target, _, __ = targets
utterance_mask = nextstep_target == 0 # 0 is the index of 'retrieve_utterance'
batch_size, num_candidates = utt_scores.shape
utt_scores = utt_scores * utterance_mask.unsqueeze(1).repeat(1, num_candidates)
utterance_target = utt_target * utterance_mask
intent_loss = loss_func(intent_scores, intent_target)
nextstep_loss = loss_func(nextstep_scores, nextstep_target)
action_loss = loss_func(action_scores, action_target)
value_loss = loss_func(value_scores, value_target)
utt_target_ids = utterance_target.unsqueeze(1) # batch_size, 1
chosen = torch.gather(utt_scores, dim=1, index=utt_target_ids)
correct = chosen.sum() # scalar
shift = torch.max(utt_scores) # perform log sum exp of the incorrect scores
res = torch.exp(utt_scores - shift) # batch_size, num_candidates
res = torch.log(torch.sum(res, dim=1)) # batch_size
incorrect = torch.sum(shift + res) # add the shift back in to complete the log-sum-exp overflow trick
utt_loss = incorrect - correct
total_loss = intent_loss + nextstep_loss + action_loss + value_loss + utt_loss
return total_loss
def run_train(args, datasets, model, exp_logger, kb_labels):
dataloader, num_examples = setup_dataloader(datasets, args.batch_size, split='train')
t_total = len(dataloader) // args.grad_accum_steps * args.epochs
exp_logger.start_train(num_examples, total_step=t_total)
optimizer = get_optimizer(args, model)
scheduler = get_scheduler(args, optimizer, t_total)
loss_func = torch.nn.CrossEntropyLoss(ignore_index=-1)
model.zero_grad()
for epoch in range(args.epochs):
model.train()
for step, batch in enumerate(dataloader):
batch = tuple(t.to(device) for t in batch)
if args.task == 'ast':
full_history, targets, context_tokens, _ = prepare_inputs(args, batch)
scores = model(full_history, context_tokens)
loss = ast_loss(scores, targets, loss_func)
elif args.task == 'cds':
full_history, targets, context_tokens, tools = prepare_inputs(args, batch)
scores = model(full_history, context_tokens, tools)
loss = cds_loss(scores, targets, loss_func)
if args.grad_accum_steps > 1:
loss = loss / args.grad_accum_steps
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
if (step+1) % args.grad_accum_steps == 0:
optimizer.step()
scheduler.step()
model.zero_grad()
result, metric = quantify(args, scores, targets, "train")
exp_logger.log_train(step, loss.item(), result, metric)
if args.debug and step > 3*args.log_interval:
break
result, res_name = run_eval(args, datasets, model, exp_logger, kb_labels, split='dev')
results = dict((k + f'_{args.filename}', v) for k, v in result.items())
print('Test Results -', results)
dev_score = result[res_name]
if dev_score > exp_logger.best_score:
exp_logger.best_score = dev_score
model.save_pretrained(exp_logger.filepath)
exp_logger.log_dev(step+1, res_name, dev_score)
def run_eval(args, datasets, model, exp_logger, kb_labels, split='dev'):
dataloader, num_examples = setup_dataloader(datasets, args.batch_size, split)
exp_logger.start_eval(num_examples, kind=args.filename)
loss_func = torch.nn.CrossEntropyLoss(ignore_index=-1)
num_outputs = len(model.outputs)
model.eval()
preds, labels, convo_ids, turn_counts = [], [], [], []
for batch in progress_bar(dataloader, total=len(dataloader), desc=f"Epoch {exp_logger.epoch}"):
batch = tuple(t.to(device) for t in batch)
full_history, batch_targets, context_tokens, tools = prepare_inputs(args, batch)
with torch.no_grad():
if args.task == 'ast':
batch_scores = model(full_history, context_tokens)
batch_loss = ast_loss(batch_scores, batch_targets, loss_func)
elif args.task == 'cds':
batch_scores = model(full_history, context_tokens, tools)
batch_loss = cds_loss(batch_scores, batch_targets, loss_func)
if args.cascade:
batch_turn_count = batch_targets.pop()
batch_convo_id = batch_targets.pop()
if args.quantify or split=='dev':
exp_logger.eval_loss += batch_loss.mean().item()
exp_logger.batch_steps += 1
preds.append(batch_scores)
labels.append(batch_targets)
convo_ids.append(batch_convo_id if args.cascade else 0)
turn_counts.append(batch_turn_count if args.cascade else 0)
if args.debug:
if len(turn_counts) > 10:
break
grouped_preds = [torch.cat([pred[i] for pred in preds], dim=0) for i in range(num_outputs)]
grouped_labels = [torch.cat([label[i] for label in labels], dim=0) for i in range(num_outputs)]
ci_and_tc = (torch.cat(convo_ids, dim=0), torch.cat(turn_counts, dim=0)) if args.cascade else (0, 0)
utils = { 'kb_labels': kb_labels, 'ci_and_tc': ci_and_tc }
metrics, res_name = quantify(args, grouped_preds, grouped_labels, utils)
exp_logger.end_eval(metrics, kind=args.filename)
return (metrics, res_name) if split == 'dev' else metrics
if __name__ == "__main__":
args = solicit_params()
args = setup_gpus(args)
set_seed(args)
ckpt_dir, cache_results = check_directories(args)
raw_data = load_data(args, cache_results[1])
tokenizer, ontology = load_tokenizer(args)
features, mappings = process_data(args, tokenizer, ontology, raw_data, *cache_results)
exp_logger = ExperienceLogger(args, ckpt_dir)
if args.task == 'ast':
datasets = {split: ActionDataset(args, feats) for split, feats in features.items()}
model = ActionStateTracking(args, mappings, ckpt_dir)
elif args.task == 'cds':
datasets = {split: CascadeDataset(args, feats) for split, feats in features.items()}
model = CascadeDialogSuccess(args, mappings, ckpt_dir)
model = model.to(device)
model.encoder.resize_token_embeddings(len(tokenizer))
dir = os.listdir(ckpt_dir)
if (len(dir) != 0):
print('loading whole model from checkpoint:')
print('overload model from checkpoint')
filepath = os.path.join(ckpt_dir, 'pytorch_model.pt')
model.encoder = torch.load(filepath)
model.encoder.eval()
run_main(args, datasets, model, exp_logger)