-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
462 lines (411 loc) · 19.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import numpy as np
import cv2
import matplotlib.pyplot as plt
import pickle#将数据转化为文件保存在磁盘并可以再次读取
import h5py
import glob#查找符合特定规则的文件路径名
import time
from random import shuffle#将序列的所有元素随机排序
from collections import Counter#便捷快速计数
import matplotlib.pyplot as plt
import math
import itertools#笛卡尔积
import sklearn
from sklearn.model_selection import train_test_split#划分数据集
from sklearn.metrics import classification_report#分类报告
from sklearn.metrics import confusion_matrix#混淆矩阵
import keras
from keras.preprocessing.image import ImageDataGenerator#图片生成器
from keras.callbacks import LearningRateScheduler, ModelCheckpoint,TensorBoard,EarlyStopping#回调函数返回学习速率;在每个训练期之后保存模型
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten,BatchNormalization
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD, Adam,RMSprop
from keras.utils import np_utils#可视化
map_characters = {0: 'abraham_grampa_simpson', 1: 'apu_nahasapeemapetilon', 2: 'bart_simpson',
3: 'charles_montgomery_burns', 4: 'chief_wiggum', 5: 'comic_book_guy', 6: 'edna_krabappel',
7: 'homer_simpson', 8: 'kent_brockman', 9: 'krusty_the_clown', 10: 'lisa_simpson',
11: 'marge_simpson', 12: 'milhouse_van_houten', 13: 'moe_szyslak',
14: 'ned_flanders', 15: 'nelson_muntz', 16: 'principal_skinner', 17: 'sideshow_bob'}
pic_size = 64#设定图片大小
batch_size = 128
epochs = 200
num_classes = len(map_characters)
pictures_per_class = 1000
test_size = 0.15
def load_pictures(BGR):
"""
Load pictures from folders for characters from the map_characters dict and create a numpy dataset and
a numpy labels set. Pictures are re-sized into picture_size square.
:param BGR: boolean to use true color for the picture (RGB instead of BGR for plt)
:return: dataset, labels set
"""
pics = []
labels = []
for k, char in map_characters.items():
pictures = [k for k in glob.glob('./characters/%s/*' % char)]#从每类人物的文件夹里返回所有图片名字pictures=[****]
#print(pictures)
#从pictures中选样本集,如果样本数目<pictures数目,则返回样本数目;如果大于,则返回pictures数目
nb_pic = round(pictures_per_class/(1-test_size)) if round(pictures_per_class/(1-test_size))<len(pictures) else len(pictures)
# nb_pic = len(pictures)
for pic in np.random.choice(pictures, nb_pic):#从每类pictures中随机选np_pic张图片作为样本数据集
a = cv2.imread(pic)#读取图片,默认彩色图,a.shape(x,x,3)
if BGR:
a = cv2.cvtColor(a, cv2.COLOR_BGR2RGB)#色彩空间转换BGR转为RGB
a = cv2.resize(a, (pic_size,pic_size))#按比例缩放为pic_size * pic_size大小,此时a.shape(64,64,3)
pics.append(a)
labels.append(k)
return np.array(pics), np.array(labels)
def get_dataset(save=False, load=False, BGR=False):
"""
Create the actual dataset split into train and test, pictures content is as float32 and
normalized (/255.). The dataset could be saved or loaded from h5 files.
:param save: saving or not the created dataset
:param load: loading or not the dataset
:param BGR: boolean to use true color for the picture (RGB instead of BGR for plt)
:return: X_train, X_test, y_train, y_test (numpy arrays)
"""
if load:
h5f = h5py.File('dataset.h5','r')
X_train = h5f['X_train'][:]
X_test = h5f['X_test'][:]
h5f.close()
h5f = h5py.File('labels.h5','r')
y_train = h5f['y_train'][:]
y_test = h5f['y_test'][:]
h5f.close()
else:
X, y = load_pictures(BGR)#读取并获得图片信息
#print(X.shape,y.shape)
y = keras.utils.to_categorical(y, num_classes)#转换为one-hot编码
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)#拆分数据集
if save:
h5f = h5py.File('dataset.h5', 'w')
h5f.create_dataset('X_train', data=X_train)
h5f.create_dataset('X_test', data=X_test)
h5f.close()
h5f = h5py.File('labels.h5', 'w')
h5f.create_dataset('y_train', data=y_train)
h5f.create_dataset('y_test', data=y_test)
h5f.close()
X_train = X_train.astype('float32') / 255.#归一化
X_test = X_test.astype('float32') / 255.
print("Train", X_train.shape, y_train.shape)
print("Test", X_test.shape, y_test.shape)
# 把每类的训练集和测试集数目打印出来
if not load:
dist = {k:tuple(d[k] for d in [dict(Counter(np.where(y_train==1)[1])), dict(Counter(np.where(y_test==1)[1]))])
for k in range(num_classes)}
print('\n'.join(["%s : %d train pictures & %d test pictures" % (map_characters[k], v[0], v[1])
for k,v in sorted(dist.items(), key=lambda x:x[1][0], reverse=True)]))
return X_train, X_test, y_train, y_test
def create_model_four_conv(input_shape):
"""
CNN Keras model with 4 convolutions.
:param input_shape: input shape, generally X_train.shape[1:]
:return: Keras model, RMS prop optimizer
"""
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same', input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
return model, opt
def create_model_six_conv(input_shape):
"""
CNN Keras model with 8 convolutions.
:param input_shape: input shape, generally X_train.shape[1:]
:return: Keras model, RMS prop optimizer
"""
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same', input_shape=input_shape))#padding=same 输出与原始图像长度相同
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
#model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
#model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Conv2D(256, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(256, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
#model.add(BatchNormalization())
model.add(Dropout(0.5))
'''
model.add(Conv2D(512, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(512, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(BatchNormalization())
model.add(Dropout(0.5))
'''
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5))
'''
model.add(Dense(512))
model.add(Activation('relu'))
#model.add(Dropout(0.5))
#model.add(Dense(256))
#model.add(Activation('relu'))
#model.add(Dropout(0.5))
model.add(Dense(128))
model.add(Activation('relu'))
#model.add(Dropout(0.5))
'''
model.add(Dense(num_classes, activation='softmax'))
#opt = RMSprop(lr=0.0001, decay=1e-6)
opt = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)#nesterov=True使用动量
return model, opt
def create_model_vgg16(input_shape):
"""
CNN Keras model with 6 convolutions.
:param input_shape: input shape, generally X_train.shape[1:]
:return: Keras model, RMS prop optimizer
"""
model = Sequential()
model.add(Conv2D(64, (3, 3), padding='same', input_shape=input_shape))#padding=same 输出与原始图像长度相同
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Conv2D(128, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(128, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Conv2D(256, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(256, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Conv2D(512, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(512, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Conv2D(512, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(512, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
#model.add(Dropout(0.5))
model.add(Dense(256))
model.add(Activation('relu'))
#model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
#opt = RMSprop(lr=0.0001, decay=1e-6)
opt = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)#nesterov=True使用动量
return model, opt
def load_model_from_checkpoint(weights_path, six_conv=False, input_shape=(pic_size,pic_size,3)):
if six_conv:
model, opt = create_model_six_conv(input_shape)
else:
model, opt = create_model_four_conv(input_shape)
model.load_weights(weights_path)
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
return model,opt
#设置学习率衰减
def lr_schedule(epoch):
initial_lrate = 0.03#初始学习率
drop = 0.5#衰减为原来的多少倍
epochs_drop = 12.0#每隔多久改变学习率
lrate = initial_lrate * math.pow(drop, math.floor((1+epoch)/epochs_drop))#math.pow(x,y)=x的y次方,math.floor向下取整
#return lrate if lrate >= 0.0001 else 0.0001
return lrate
def training(model, X_train, X_test, y_train, y_test, data_augmentation=True):
"""
Training.
:param model: Keras sequential model
:param data_augmentation: boolean for data_augmentation (default:True)
:param callback: boolean for saving model checkpoints and get the best saved model
:param six_conv: boolean for using the 6 convs model (default:False, so 4 convs)
:return: model and epochs history (acc, loss, val_acc, val_loss for every epoch)
"""
if data_augmentation:
#数据增强
datagen = ImageDataGenerator(
featurewise_center=False, # 将输入数据的均值设置为 0,逐特征进行
samplewise_center=False, # 将每个样本的均值设置为 0
featurewise_std_normalization=False, # 将输入除以数据标准差,逐特征进行
samplewise_std_normalization=False, # 将每个输入除以其标准差
zca_whitening=False, # 应用 ZCA 白化
rotation_range=10, # 随机旋转的度数范围(degrees, 0 to 180),旋转角度
width_shift_range=0.1, # 随机水平移动的范围,比例
height_shift_range=0.1, # 随机垂直移动的范围,比例
horizontal_flip=True, # 随机水平翻转,相当于镜像
vertical_flip=False) # 随机垂直翻转,相当于镜像
# 根据一组样本数据,计算与数据相关转换有关的内部数据统计信息,当且仅当 featurewise_center 或 featurewise_std_normalization 或 zca_whitening 时才需要
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(X_train)
###每当val_cc有提升就保存checkpoint
#save_best_only=True被监测数据的最佳模型就不会被覆盖,mode='max'保存的是准确率最大值
filepath="weights_6conv_%s.hdf5" % time.strftime("%Y%m%d")
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
# 生成日志以便借助 TensorBoard 进行可视化分析。
#tensorboard = TensorBoard(log_dir='logs', histogram_freq=0)
#自动调节学习率
#lrate = LearningRateScheduler(lr_schedule,verbose=1)
#EarlyStopping
#early_stopping = EarlyStopping(monitor='val_loss', patience=25, verbose=1, mode='min')
callbacks_list = [checkpoint]
history = model.fit_generator(datagen.flow(X_train, y_train,#传入 Numpy 数据和标签数组,生成批次的 增益的/标准化的 数据。在生成的批次数据上无限制地无限次循环。
batch_size=batch_size),
steps_per_epoch=X_train.shape[0] // batch_size,
epochs=epochs,
validation_data=(X_test, y_test),
verbose=1,
callbacks=callbacks_list)#调用一些列回调函数
#查看分类报告,返回每类的精确率,召回率,F1值
#P=TP/(TP+FP),R=TP/(TP+FN),F1=2PR/(P+R)
score = model.evaluate(X_test,y_test,verbose=1)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
y_pred = model.predict(X_test)
print('\n', sklearn.metrics.classification_report(np.where(y_test > 0)[1], #y_test真实分类,np.where返
#回(array[],array[]),其中后面的array就是行方向上,y_test>0(1)的索引
np.argmax(y_pred, axis=1),#返回行方向上最大数值的索引
target_names=list(map_characters.values())), sep='')
#acc和loss可视化
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train'], loc='upper left')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train'], loc='upper left')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
#画出混淆矩阵
plt.figure(figsize = (10,10))
cnf_matrix = sklearn.metrics.confusion_matrix(np.where(y_test > 0)[1],np.argmax(y_pred, axis=1))
classes = list(map_characters.values())
thresh = cnf_matrix.max() / 2.#阈值
for i, j in itertools.product(range(cnf_matrix.shape[0]), range(cnf_matrix.shape[1])):
plt.text(j, i, cnf_matrix[i, j],#在图形中添加文本注释
horizontalalignment="center",#水平对齐
color="white" if cnf_matrix[i, j] > thresh else "black")
plt.imshow(cnf_matrix,interpolation='nearest',cmap=plt.cm.Blues)#cmap颜色图谱,默认RGB(A)
plt.colorbar()#显示颜色条
plt.title('confusion_matrix')#标题
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks,classes,rotation=90)
plt.yticks(tick_marks,classes)
plt.ylabel('True label')
plt.xlabel('Predicted label')
#cnf_matrix = sklearn.metrics.confusion_matrix(np.where(y_test > 0)[1],np.argmax(y_pred, axis=1))
#classes = list(map_characters.values())
#plot_confusion_matrix(cnf_matrix,classes)
else:
history = model.fit(X_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_split=0.1,#用作验证集的训练数据的比例
verbose=1,
shuffle=True)#是否在每轮迭代之前进行数据混洗
score = model.evaluate(X_test, y_test, verbose=1)
#查看分类报告,返回每类的精确率,召回率,F1值
#P=TP/(TP+FP),R=TP/(TP+FN),F1=2PR/(P+R)
score = model.evaluate(X_test,y_test,verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
y_pred = model.predict(X_test)
print('\n', sklearn.metrics.classification_report(np.where(y_test > 0)[1], #y_test真实分类,np.where返
#回(array[],array[]),其中后面的array就是行方向上,y_test>0(1)的索引
np.argmax(y_pred, axis=1),#返回行方向上最大数值的索引
target_names=list(map_characters.values())), sep='')
#acc和loss可视化
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train'], loc='upper left')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train'], loc='upper left')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
#画出混淆矩阵
plt.figure(figsize = (10,10))
cnf_matrix = sklearn.metrics.confusion_matrix(np.where(y_test > 0)[1],np.argmax(y_pred, axis=1))
classes = list(map_characters.values())
thresh = cnf_matrix.max() / 2.#阈值
for i, j in itertools.product(range(cnf_matrix.shape[0]), range(cnf_matrix.shape[1])):
plt.text(j, i, cnf_matrix[i, j],#在图形中添加文本注释
horizontalalignment="center",#水平对齐
color="white" if cnf_matrix[i, j] > thresh else "black")
plt.imshow(cnf_matrix,interpolation='nearest',cmap=plt.cm.Blues)#cmap颜色图谱,默认RGB(A)
plt.colorbar()#显示颜色条
plt.title('confusion_matrix')#标题
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks,classes,rotation=90)
plt.yticks(tick_marks,classes)
plt.ylabel('True label')
plt.xlabel('Predicted label')
return model, history
if __name__ == '__main__':
X_train, X_test, y_train, y_test = get_dataset(load=True)
model, opt = create_model_six_conv(X_train.shape[1:])
#model, opt = create_model_vgg16(X_train.shape[1:])
#model,opt = load_model_from_checkpoint('weights_6conv_20180602.hdf5', six_conv=True, input_shape=(pic_size,pic_size,3))
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
model, history = training(model, X_train, X_test, y_train, y_test, data_augmentation=True)