-
Notifications
You must be signed in to change notification settings - Fork 3
/
nesting.cpp
369 lines (367 loc) · 13.9 KB
/
nesting.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#include "nesting.h"
namespace nesting {
NFPCacheValue& comp_nfp(const Polygon_with_holes_2* poly_A,
const uint32_t rotation_A,
const uint32_t allowed_rotation_A,
const Polygon_with_holes_2* poly_B,
const uint32_t rotation_B,
const uint32_t allowed_rotation_B,
Layout& layout) {
NFPCacheKey key(poly_A, poly_B, rotation_A, rotation_B);
Polygon_with_holes_2 nfp;
auto kv = layout.nfp_cache.find(key);
if (kv == layout.nfp_cache.end()) {
Transformation scale(CGAL::SCALING, -1);
auto rotate_A = geo::get_rotate(rotation_A, allowed_rotation_A);
auto rotate_B = geo::get_rotate(rotation_B, allowed_rotation_B);
Polygon_with_holes_2 minus_B;
Polygon_with_holes_2 rotated_A;
if (rotate_B) {
minus_B = geo::transform_polygon_with_holes(scale * (*rotate_B), *poly_B);
} else {
minus_B = geo::transform_polygon_with_holes(scale, *poly_B);
}
if (rotate_A) {
rotated_A = geo::transform_polygon_with_holes(*rotate_A, *poly_A);
} else {
rotated_A = *poly_A;
}
nfp = CGAL::minkowski_sum_2(rotated_A, minus_B);
geo::strict_simplify(nfp);
auto bbox = nfp.bbox();
NFPCacheValue v;
v.nfp = nfp;
v.xmin = CGAL::to_double(bbox.xmin());
v.xmax = CGAL::to_double(bbox.xmax());
v.ymin = CGAL::to_double(bbox.ymin());
v.ymax = CGAL::to_double(bbox.ymax());
auto _kv = layout.nfp_cache.emplace(key, v);
return _kv.first->second;
} else {
return kv->second;
}
}
FT comp_pd(NFPCacheValue& v, double px, double py, Layout& layout) {
auto& original_nfp = v.nfp;
if (px <= v.xmin || px >= v.xmax || py <= v.ymin || py >= v.ymax) {
return geo::FT_ZERO;
}
hash::PDCacheKey key(&original_nfp, px, py);
FT pd;
layout.pd_count++;
auto iter = layout.pd_cache.find(key);
if (iter != layout.pd_cache.end()) {
pd = iter->second;
} else {
layout.pd_miss++;
// 为效率考虑使用不精确构建
Point_2 relative_point(px, py);
pd = geo::comp_pd(original_nfp, relative_point);
layout.pd_cache.emplace(key, pd);
}
return pd;
}
void shrink(Layout& layout) {
layout.cur_length = layout.best_length * (1 - layout.rdec);
if (layout.cur_length < layout.lower_length) {
layout.cur_length = layout.lower_length;
}
std::vector<size_t> v;
// 将超出cur_length的polygon重新放置
for (size_t i = 0; i < layout.poly_num; i++) {
auto& p = layout.sheet_parts[0][i];
auto right_vertex = p.transformed.outer_boundary().right_vertex();
auto x = right_vertex->x();
if (x > layout.cur_length) {
auto ifr = geo::comp_ifr(layout.sheets[0].sheet, p.transformed);
auto bbox = ifr.bbox();
double random_x;
double random_y;
// 放置策略:随机放置
random_x = bbox.x_span() * rand::right_nd01() + bbox.xmin();
random_y = bbox.y_span() * rand::center_nd01() + bbox.ymin();
p.set_translate(random_x, random_y);
v.push_back(i);
}
}
// 更新pd
for (auto& i : v) {
auto& p = layout.sheet_parts[0][i];
auto& px = p.get_translate_ft_x();
auto& py = p.get_translate_ft_y();
auto double_px = CGAL::to_double(px);
auto double_py = CGAL::to_double(py);
for (size_t j = 0; j < layout.poly_num; j++) {
if (i == j) {
continue;
}
auto& q = layout.sheet_parts[0][j];
auto& qx = q.get_translate_ft_x();
auto& qy = q.get_translate_ft_y();
auto double_qx = q.get_translate_double_x();
auto double_qy = q.get_translate_double_y();
auto& nfp =
comp_nfp(q.base, q.get_rotation(), q.allowed_rotations, p.base,
p.get_rotation(), p.allowed_rotations, layout);
Point_2 relative_point(px - qx, py - qy);
auto pd =
comp_pd(nfp, double_px - double_qx, double_py - double_qy, layout);
layout.set_pd(i, j, pd);
}
}
// 更新sheet
layout.sheets[0].set_width(layout.cur_length);
}
void get_init_solu(Layout& layout) {
//std::ofstream s("init.txt", std::ios::out);
//s << "init solu start" << std::endl;
size_t num_poly = layout.poly_num;
for (size_t i = 0; i < num_poly; i++) {
auto& shape_i = layout.sheet_parts[0][i];
auto& polygon_i = shape_i.transformed;
auto rotation_i = shape_i.get_rotation();
auto& ix = shape_i.get_translate_ft_x();
auto& iy = shape_i.get_translate_ft_y();
auto double_ix = CGAL::to_double(ix);
auto double_iy = CGAL::to_double(iy);
auto ifr = geo::comp_ifr(layout.sheets[0].sheet, polygon_i);
CandidatePoints c(layout.poly_num - 1);
c.set_boundary(ifr);
for (size_t j = 0; j < num_poly; j++) {
if (j == i) {
continue;
}
auto& shape_j = layout.sheet_parts[0][j];
auto& jx = shape_j.get_translate_ft_x();
auto& jy = shape_j.get_translate_ft_y();
auto double_jx = shape_j.get_translate_double_x();
auto double_jy = shape_j.get_translate_double_y();
auto translate = shape_j.get_translate();
auto rotation_j = shape_j.get_rotation();
auto& nfp =
comp_nfp(shape_j.base, rotation_j, shape_j.allowed_rotations,
shape_i.base, rotation_i, shape_i.allowed_rotations, layout);
FT pd;
// j < i时的pd已经被更新
if (j > i) {
Point_2 relative_point(ix - jx, iy - jy);
pd = comp_pd(nfp, double_ix - double_jx, double_iy - double_jy, layout);
layout.set_pd(i, j, pd);
}
c.nfps.push_back(&nfp);
c.translations.push_back(translate);
c.translate_x.push_back(double_jx);
}
c.initialize();
auto points = c.get_perfect_points();
// points为空时
if (points.empty()) {
std::cerr << "Error: Candidate points set is empty" << std::endl;
break;
}
auto& first_point = points[0];
auto first_x = first_point.x();
auto first_y = first_point.y();
auto double_first_x = CGAL::to_double(first_x);
auto double_first_y = CGAL::to_double(first_y);
for (size_t j = 0; j < num_poly; j++) {
size_t k = j;
if (i == j) {
continue;
} else if (j > i) {
k--;
}
auto& nfp = c.nfps[k];
// auto& t = c.translations[k];
auto& shape_j = layout.sheet_parts[0][j];
auto& jx = shape_j.get_translate_ft_x();
auto& jy = shape_j.get_translate_ft_y();
auto double_jx = shape_j.get_translate_double_x();
auto double_jy = shape_j.get_translate_double_y();
Point_2 relative_point(first_x - jx, first_y - jy);
// 通常情况下此时pd为0
auto pd = comp_pd(*nfp, double_first_x - double_jx,
double_first_y - double_jy, layout);
shape_i.set_translate(first_x, first_y);
layout.set_pd(i, j, pd);
}
}
// 判断初始解是否可行
auto pure_overlap = layout.get_pure_total_pd();
if (pure_overlap > geo::BIAS) {
throw std::runtime_error("Error get_init_solu(): initial solution is not feasible");
}
// 更新layout当前长度
//s << "layout update" << std::endl;
layout.update_cur_length();
layout.best_length = layout.cur_length;
// 更新sheet
layout.sheets[0].set_width(layout.cur_length);
//s << "update best result" << std::endl;
layout.best_result = layout.sheet_parts;
//s << "update best util" << std::endl;
layout.best_utilization = CGAL::to_double(
layout.area / (layout.best_length * layout.sheets[0].height));
//s << "init solu end" << std::endl;
}
bool minimize_overlap(Layout& layout, volatile bool* requestQuit) {
size_t numIterations = 0;
FT minOverlap = geo::INF;
layout.initialize_miu();
std::clog << "It: ";
std::vector<size_t> indices;
for (size_t i = 0; i < layout.poly_num; i++) {
indices.push_back(i);
}
while (numIterations < layout.maxIterations) {
if (*requestQuit) {
return false;
}
// 对polygon随机排列
std::shuffle(indices.begin(), indices.end(), rand::random_engine3);
// 随机选一个polygon,寻找它可能存在的最小位置
for (size_t i = 0; i < layout.poly_num; i++) {
auto idx = indices[i];
auto& shape = layout.sheet_parts[0][idx];
auto cur_pd = layout.get_one_polygon_pd(idx);
// 如果这个polygon与其他polygon没有发生重叠,直接跳过
if (cur_pd < geo::BIAS && cur_pd > -geo::BIAS) {
continue;
}
// 遍历polygon的所有角度
for (auto& rotation : shape.reduced_rotations) {
auto rotate = geo::get_rotate(rotation, shape.allowed_rotations);
Polygon_with_holes_2 rotated;
if (rotate) {
rotated = geo::transform_polygon_with_holes(*rotate, *shape.base);
} else {
rotated = *shape.base;
}
// 计算候选点
CandidatePoints c(layout.poly_num - 1);
c.set_boundary(geo::comp_ifr(layout.sheets[0].sheet, rotated));
for (size_t k = 0; k < layout.poly_num; k++) {
if (k == idx) {
continue;
}
auto& shape_k = layout.sheet_parts[0][k];
auto& nfp = comp_nfp(shape_k.base, shape_k.get_rotation(),
shape_k.allowed_rotations, shape.base, rotation,
shape.allowed_rotations, layout);
auto translate_x = shape_k.get_translate_double_x();
c.nfps.push_back(&nfp);
c.translations.push_back(shape_k.get_translate());
c.translate_x.push_back(translate_x);
}
c.initialize();
auto points = c.get_arrangement_points();
auto size = points.size();
// std::clog << "The size of Candidate points is: " << size <<
// std::endl;
// TODO 这里可以压缩到多线程求最小值的规约问题->求min(new_pd)
for (size_t l = 0; l < size; ++l) {
auto& point = points[l];
auto point_x = point.x();
auto point_y = point.y();
auto double_point_x = CGAL::to_double(point_x);
auto double_point_y = CGAL::to_double(point_y);
double new_pd = 0;
std::vector<FT> temp(layout.poly_num - 1);
// 尝试将polygon idx平移到候选点上去,计算平移到哪个点polygon
// idx与其他多边形的pd之和会降低
for (size_t k = 0; k < layout.poly_num - 1; k++) {
size_t m = k;
if (k >= idx) {
m = k + 1;
}
auto& nfp = c.nfps[k];
auto& shape_m = layout.sheet_parts[0][m];
auto double_mx = shape_m.get_translate_double_x();
auto double_my = shape_m.get_translate_double_y();
temp[k] = comp_pd(*nfp, double_point_x - double_mx,
double_point_y - double_my, layout);
auto t = CGAL::to_double(temp[k]);
new_pd += t * layout.get_miu(idx, m);
}
// 选择使得pd更小的那个点,如果不存在这样的点,则不会对layout发生任何变化
if (new_pd < cur_pd) {
shape.set(rotation, point_x, point_y);
for (size_t k = 0; k < layout.poly_num - 1; k++) {
if (k < idx) {
layout.set_pd(idx, k, temp[k]);
} else {
layout.set_pd(idx, k + 1, temp[k]);
}
}
cur_pd = new_pd;
}
// 如果这个候选点对其他polygon没有重叠,直接返回
if (cur_pd < geo::BIAS) {
break;
}
}
}
}
auto pure_overlap = layout.get_pure_total_pd();
// auto overlap = layout.get_total_pd();
if (pure_overlap < geo::BIAS) {
std::clog << std::endl;
return true;
} else if (pure_overlap < minOverlap) {
std::clog << std::endl;
std::clog << "Overlap: " << pure_overlap << std::endl;
std::clog << "Total/Miss: " << layout.pd_count << "/" << layout.pd_miss
<< ", " << (double)layout.pd_miss / layout.pd_count
<< std::endl;
std::clog << "It: ";
minOverlap = pure_overlap;
numIterations = 0;
}
layout.update_miu();
numIterations++;
}
std::clog << std::endl;
return false;
}
void GOMH(Layout& layout,
size_t max_time,
std::function<void(const Solution&)> ProgressHandler,
volatile bool* requestQuit) {
clock_t start = clock();
get_init_solu(layout);
ProgressHandler(Solution(
CGAL::to_double(layout.best_length), layout.best_utilization,
((double)(clock() - start) / CLOCKS_PER_SEC), layout.best_result[0]));
shrink(layout);
while (((double)(clock() - start) / CLOCKS_PER_SEC) < max_time) {
if (*requestQuit) {
return;
}
auto feasible = minimize_overlap(layout, requestQuit);
if (feasible) {
layout.best_result = layout.sheet_parts;
layout.best_length = (std::min)(layout.best_length, layout.cur_length);
layout.best_utilization = CGAL::to_double(
layout.area / (layout.best_length * layout.sheets[0].height));
ProgressHandler(Solution(
CGAL::to_double(layout.best_length), layout.best_utilization,
((double)(clock() - start) / CLOCKS_PER_SEC), layout.best_result[0]));
// print_result(layout, start);
if (layout.best_length <= layout.lower_length) {
break;
}
shrink(layout);
} else {
auto t = layout.cur_length * (1 + layout.rinc);
if (t >= layout.best_length) {
shrink(layout);
} else {
expand(layout);
}
}
}
std::clog << "best length: " << layout.best_length << std::endl;
std::clog << "best utilization rate: " << layout.best_utilization
<< std::endl;
}
} // namespace nesting