-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbert_nsp_trainer.py
75 lines (60 loc) · 2.95 KB
/
bert_nsp_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os, sys, time, math
from tqdm import tqdm
import numpy as np
dir = os.path.split(os.path.realpath(__file__))[0]
sys.path.append('/data1/ljq/')
sys.path.append('/home/jqliang/')
import pt_utils
import torch
import torch.nn as nn
from transformers import BertTokenizer, BertForMaskedLM, BertConfig, BertForPreTraining
os.environ['CUDA_VISIBLE_DEVICES'] = '3,5,7'
from cetokenizer import CEBertTokenizer
tokenizer = CEBertTokenizer('vocab.txt')
config = BertConfig.from_pretrained('hfl/chinese-roberta-wwm-ext')
config.vocab_size = len(tokenizer.vocab)
model = BertForPreTraining(config)
maxlen = 256
def collate_fn(xs):
return {k:torch.tensor([x[k] for x in xs], dtype=torch.long) for k in xs[0].keys()}
if __name__ == '__main__':
from corpus_dataset import PureGenDataset, NSPGenerator, MixedSentences, RoBERTaFullSentFast
bsz = 64
ds = PureGenDataset(NSPGenerator(MixedSentences(), tokenizer, maxlen, repeat=3), bsz*30000)
dl = torch.utils.data.DataLoader(ds, batch_size=bsz, collate_fn=collate_fn, num_workers=2)
mfile = 'myroberta_mlm.pt'
model.bert.load_state_dict(torch.load('myroberta_v1.pt'), strict=False)
#omodel = BertModel.from_pretrained('hfl/chinese-roberta-wwm-ext')
#sd = {x:y for x,y in omodel.state_dict().items() if 'token_type' in x}
#model.load_state_dict(sd, strict=False)
#torch.save(model.bert.state_dict(), 'myroberta.pt')
#sys.exit()
epochs = 5
total_steps = len(dl) * epochs
import accelerate
from accelerate import Accelerator, DistributedDataParallelKwargs
accelerator = Accelerator(kwargs_handlers=[DistributedDataParallelKwargs(find_unused_parameters=False)])
#optimizer, scheduler = pt_utils.get_bert_optim_and_sche(model, 1e-4, total_steps)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and p.requires_grad], 'weight_decay': 0.01},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad], 'weight_decay': 0.0}
]
optimizer = accelerate.utils.DummyOptim(optimizer_grouped_parameters)
scheduler = accelerate.utils.DummyScheduler(optimizer, total_num_steps=total_steps, warmup_num_steps=total_steps//10)
model, optimizer, dl_train, scheduler = accelerator.prepare(model, optimizer, dl, scheduler)
device = accelerator.device
def train_func(model, x):
attent_mask = (x['input_ids'] > 0).long()
out = model(input_ids=x['input_ids'].to(device),
attention_mask=attent_mask.to(device),
token_type_ids=x['token_type_ids'].to(device),
labels=x['labels'].to(device),
next_sentence_label=x['nsp_label'].to(device),
return_dict=True)
return out.loss
def test_func(): pass
pt_utils.train_model(model, optimizer, dl, epochs, train_func, test_func,
scheduler=scheduler, save_file=mfile, accelerator=accelerator)
torch.save(model.bert.state_dict(), 'myroberta.pt')
print('done')