-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_TreeSliced_tildeET_d_KT.m
161 lines (123 loc) · 3.5 KB
/
compute_TreeSliced_tildeET_d_KT.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
% sample code to compute tildeET -- d_\alpha -- KT
% in experiments (for TWITTER dataset)
clear all
clc
% [1, 5, 10, 15, 20];
nTS = 1; % number of slices
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% using clustering-based tree metric construction
% from tree-sliced TW
load('twitter.mat');
TM_L = 6; %highest level
TM_KC = 4; %# of clusters
% OUTPUT
tET_SUM = zeros(N, N);
KT_SUM = zeros(N, N);
dAlpha_SUM = zeros(N, N);
runTime_TM = 0;
runTime_Mapping = 0;
runTime_tET = 0;
runTime_KT = 0;
runTime_TMR = 0;
%================
% OPT
opt.a = 1;
opt.b = 1;
opt.lambda = 1;
opt.alpha = 0;
opt.c = 1;
opt.x_0 = 'r'; % root --> w(r) = a; [w(x) = d(r, x) + a]
TM_ALL = cell(nTS, 1);
% REPEAT for each tree slice
for idSS = 1:nTS
disp(['.........Tree: #' num2str(idSS)]);
%%%%%%%%
disp(['...compute tree metric']);
tic
[TM, XX_VertexID] = BuildTreeMetric_HighDim_V2(XX, TM_L, TM_KC);
runTime_TM_ii = toc;
% accumulate
runTime_TM = runTime_TM + runTime_TM_ii;
TM_ALL{idSS} = TM;
disp(['...preprocessing -- building look-up tables']);
massXX = zeros(1, N);
hXX = zeros(TM.nVertices - 1, N);
% TM.nVertices - 1
% general simplex vector
tic
for ii = 1:N
massXX(ii) = sum(WW{ii});
hXX(:, ii) = TreeMapping_Id2V(XX_VertexID{ii}, WW{ii}, TM);
end
runTime_Mapping_ii = toc;
% accumulate
runTime_Mapping = runTime_Mapping + runTime_Mapping_ii;
%%%%%%
tic
TMR = zeros(1, TM.nVertices);
for ii = 1:TM.nVertices
TMR(ii) = TreeMetricFromRoot(ii, TM);
end
runTime_TMR_ii = toc;
% accumulate
runTime_TMR = runTime_TMR + runTime_TMR_ii;
disp(['...compute tildeET -- dAlpha']);
%%%%%%%
dd_tET = zeros(N, N);
dd_dAlpha = zeros(N, N);
tic
for ii = 1:N
if mod(ii, 50) == 0
disp(['......' num2str(ii)]);
end
% ii -- (ii:N)
% tET
m_ii = massXX(ii);
MJJ = massXX(ii:N); % row
MII = repmat(m_ii, 1, (N-ii+1));
DD1 = (opt.a - opt.alpha)*abs(MII-MJJ) - opt.b*opt.lambda*min(MII, MJJ);
h_II = hXX(:, ii);
HJJ = hXX(:, ii:N);
HII = repmat(h_II, 1, (N-ii+1));
DD2 = sum(abs(HII - HJJ)); % row
DD_RII = DD1 + DD2;
dd_tET(ii, ii:N) = DD_RII;
dd_tET(ii:N, ii) = DD_RII';
% d^{\alpha}
hDD1 = (opt.a + (opt.b*opt.lambda)/2 - opt.alpha)*abs(MII-MJJ);
hDD_RII = hDD1 + DD2;
dd_dAlpha(ii, ii:N) = hDD_RII;
dd_dAlpha(ii:N, ii) = hDD_RII';
end
runTime_tET_ii = toc;
% accumulate
runTime_tET = runTime_tET + runTime_tET_ii;
tET_SUM = tET_SUM + dd_tET;
dAlpha_SUM = dAlpha_SUM + dd_dAlpha;
%==========================
disp(['...compute KT']);
%%%%%%%
dd_KT = zeros(N, N);
tic
for ii = 1:N
if mod(ii, 50) == 0
disp(['......' num2str(ii)]);
end
for jj = ii:N
dd_KT(ii, jj) = KT_mexEMD_TMR(TMR, XX_VertexID{ii}, WW{ii}, XX_VertexID{jj}, WW{jj}, TM, opt);
end
end
runTime_KT_ii = toc;
% accumulate
runTime_KT = runTime_KT + runTime_KT_ii;
KT_SUM = KT_SUM + dd_KT;
end
% Average
tET = tET_SUM/nTS;
dAlpha = dAlpha_SUM/nTS;
KT = KT_SUM/nTS;
save(['twitter_TreeSlice_L' num2str(TM_L) 'K' num2str(TM_KC) 'S' num2str(nTS) '.mat'], ...
'tET', 'dAlpha', 'KT', ...
'opt', 'TM_L', 'TM_KC', 'nTS', ...
'runTime_TM', 'runTime_Mapping', 'runTime_tET', 'runTime_KT', 'runTime_TMR');
disp('FINISH!');