-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreadme.txt
50 lines (37 loc) · 1.59 KB
/
readme.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
NOTES:
----------------------------------
* SETUP:
----------------------------------
+ run setup for setpath for figtree (precompiled for Mac and Linux)
----------------------------------
* DEMO:
----------------------------------
+ test_dFIM: randomly generate two persistence diagrams, and compute the Fisher information metric
between them, with or without Fast Gauss Transform.
----------------------------------
* FUNCTIONS in LIB:
----------------------------------
+ compute_dFIM_distance: compute Fisher information metric between two persistence diagrams
(without Fast Gauss Transform --- Quadratic complexity)
<Algorithm 1 in the NIPS'18 paper)
+ compute_dFIM_distance_FGT: compute Fisher information metric between two persistence diagrams,
approximated by Fast Gauss Transform --- Linear complexity
<Algorithm 1 in the NIPS'18 paper>
+ Third party toolbox (figtree-0.9.3): Fast Gauss Transform library
(Link: http://www.umiacs.umd.edu/~morariu/figtree/
or http://sourceforge.net/projects/figtree)
----------------------------------
RELEVANT PAPER:
----------------------------------
Tam Le, Makoto Yamada, Persistence Fisher Kernel: A Riemannian Manifold Kernel
for Persistence Diagrams, Neural Information Processing Systems (NIPS), Canada, 2018.
ArXiv link: https://arxiv.org/abs/1802.03569
----------------------------------
* CONTACT
----------------------------------
% Version 0.1 (October 19th, 2018)
@ Tam Le - RIKEN AIP
Email: tam.le@riken.jp
Homepage: https://sites.google.com/site/lttamvn/
Please contact me if you observe any bugs in the execution of the algorithms.
Many thanks !!!