-
Notifications
You must be signed in to change notification settings - Fork 0
/
NyquistLog.m
356 lines (337 loc) · 11.9 KB
/
NyquistLog.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
function NyquistLog(sys,NgPlot,tol)
% NYQUISTLOG makes a polar plot of the open loop transfer function sys: the
% amplitude M=|sys| is converted to a logarithmic scale according to the
% following function:
% _
% | M^(log10(2)) if M < 1
% L(M)=|
% |_ 2-M^(-log10(2)) if M > 1
%
% The optional boolean parameter NGPLOT specifies if also the diagram for
% negative frequencies should be plotted.
% The optional parameter TOL specifies the tolerance for quasi zero-pole
% cancelation by the MINREAL function.
% Default values are NGPLOT = TRUE and TOL = SQRT(EPS).
% May 2021
% Luca Ballotta
% Department of Information Engineering,
% University of Padova,
% Padova, Italy.
%
% Modified version of the function Closed_Logarithmic_Nyquist by
% Roberto Zanasi and Federica Grossi.
%
% May be distributed freely for non-commercial use,
% but please leave the above info unchanged, for
% credit and feedback purposes.
%%%%%%%%%
% Input check
% Checking system variable:
[hlp,den]=tfdata(sys,'v');
k=1;
while (hlp(k) == 0) k=k+1; end
num=(hlp(k:end));
hlp=size(size(den));
if (hlp(2)> 2)
error('NyquistlLog:InputError',...
'Only monovariable systems allowed.');
end
% Checking delay:
dly=get(sys,'ioDelay');
if (dly>0)
error('NyquistlLog:InputError',...
'Delay not allowed.');
end
% Checking continuous-time:
sorz=get(sys,'variable');
if (sorz ~= 's')
error('NyquistlLog:InputError',...
'Only continuous systems allowed.');
end
% Checking system order:
k=1;
while (den(k) == 0) k=k+1; end
den=(den(k:end));
sysdim=size(den); sysdim=sysdim(2)-1;
if (sysdim == 0)
error('NyquistlLog:InputError',...
'Denominator order of zero not allowed.');
end
numdim=size(num); numdim = numdim(2)-1;
if (numdim > sysdim)
error('NyquistlLog:InputError',...
'Only causal systems allowed.');
end
% Checking optional arguments
if nargin<2
NgPlot = true;
elseif (NgPlot~=true && NgPlot~=false)
error('NyquistlLog:InputError',...
'''NgPlot'' must be boolean valued.');
end
if nargin<3
tol = sqrt(eps);
elseif (not(isscalar(tol)) && tol<=0)
error('NyquistlLog:InputError',...
'''tol'' must be positive valued.');
end
% Checking open-loop stability
sys=minreal(sys,tol);
sys_poles = pole(sys);
if (any(real(sys_poles)>0))
error('NyquistlLog:InputError',...
'Only stable systems allowed.');
end
%%%%%%%%%
% Plot params
n=2; % Base of the L function
Lw=1.2; % Linewidth
Nd=4; % Number of level lines
clear XPlot
XPlot.c='r'; XPlot.Lw=Lw; XPlot.NgPlot=NgPlot; XPlot.sys = sys;
%%%%%%%%%%%%%%%%%%%%%%%%
figure(); clf
plot(2*exp(1i*(0:0.01:1)*2*pi),'-')
hold on
grid on
plot(exp(1i*(0:0.01:1)*2*pi),'-')
plot(exp(1i*pi),'*r')
text(-1.05,-0.05,'-1')
xx=1*exp(1i*pi/4);
text(real(xx),imag(xx),[num2str(0) 'dB'])
for ii=1:Nd
plot(1/(n^ii)*exp(1i*(0:0.01:1)*2*pi),':')
plot((2-1/(n^ii))*exp(1i*(0:0.01:1)*2*pi),':')
if ii<3
xx=1/(n^ii)*exp(1i*pi/4);
text(real(xx),imag(xx),[num2str(-ii*20) 'dB'])
xx=(2-n^(-ii))*exp(1i*pi/4);
text(real(xx),imag(xx),[num2str(ii*20) 'dB'])
end
end
for ii=1:12 % plot of sectors of pi/6
ps=2*exp(1i*ii*pi/6);
plot([0 real(ps)],[0 imag(ps)],':')
end
plot([-1 1]*3,[-1 1]*0,':')
plot([-1 1]*0,[-1 1]*3,':')
axis equal
axis([-1 1 -1 1]*2.2)
[mult,freqs_inf] = groupcounts(imag(sys_poles(real(sys_poles)==0 & imag(sys_poles)>0)));
n_freqs_inf = length(freqs_inf);
if isempty(freqs_inf)
[RE,IM] = nyquist(XPlot.sys,logspace(-Nd,Nd,1000));
else
n_points = 1000/(n_freqs_inf+1);
freq_inf_th = .01;
while max(abs(freqresp(sys,freqs_inf-freq_inf_th))) <= 1
freq_inf_th = freq_inf_th / 2;
end
[RE,IM] = nyquist(XPlot.sys,logspace(-Nd,log10(freqs_inf(1)-freq_inf_th),n_points));
for ii = 1:n_freqs_inf-1
[RE_i,IM_i] = nyquist(XPlot.sys,logspace(log10(freqs_inf(ii)+freq_inf_th),log10(freqs_inf(ii+1)-freq_inf_th),n_points));
RE = cat(3,RE,RE_i);
IM = cat(3,IM,IM_i);
end
[RE_f,IM_f] = nyquist(XPlot.sys,logspace(log10(freqs_inf(end)+freq_inf_th),Nd,n_points));
RE = cat(3,RE,RE_f);
IM = cat(3,IM,IM_f);
end
NY=(RE(:,:)+1i*IM(:,:));
%%%%%%%%%%%%%%%%%%%%%
NY_L2=PlotLogNyq(NY,n,freqs_inf,mult);
plot(NY_L2{1,1},XPlot.c,'LineWidth',Lw)
for ii = 1:n_freqs_inf
plot(NY_L2{1,2*ii},XPlot.c,'LineWidth',Lw,'Linestyle',':')
plot([real(NY_L2{1,2*ii}(end)) real(NY_L2{1,2*ii+1}(1))],[imag(NY_L2{1,2*ii}(end)) imag(NY_L2{1,2*ii+1}(1))],'Color',XPlot.c,'Linewidth',XPlot.Lw)
plot(NY_L2{1,2*ii+1},XPlot.c,'LineWidth',Lw)
end
% plot for w<0 and complete
compr_fact = .98;
NY_1=NY_L2{1,1};
circ_inf=CompleteNyqPlot(NY_1(1),XPlot,compr_fact);
if XPlot.NgPlot
plot(compr_fact*conj(NY_L2{1,1}),XPlot.c,'LineWidth',Lw,'Linestyle','--')
for ii = 1:n_freqs_inf
plot(compr_fact*conj(NY_L2{1,2*ii}),XPlot.c,'LineWidth',Lw,'Linestyle',':')
plot(compr_fact*[real(NY_L2{1,2*ii}(end)) real(NY_L2{1,2*ii+1}(1))],-compr_fact*[imag(NY_L2{1,2*ii}(end)) imag(NY_L2{1,2*ii+1}(1))],...
'Color',XPlot.c,'Linewidth',XPlot.Lw,'Linestyle','--')
plot(compr_fact*conj(NY_L2{1,2*ii+1}),XPlot.c,'LineWidth',Lw,'Linestyle','--')
end
end
% Arrows
pp=[150 480 600 700 850];
NY_L2=transpose(cell2mat(NY_L2));
for jj=pp % arrows for w>0
plotArrow(real(NY_L2(jj)),imag(NY_L2(jj)),real(NY_L2(jj+1)),imag(NY_L2(jj+1)),0.1,0.1,'r')
end
if XPlot.NgPlot
pp=[150 480 600 700];
for jj=pp % arrows for w<0
plotArrow(compr_fact*real(NY_L2(jj)),-compr_fact*imag(NY_L2(jj)),compr_fact*real(NY_L2(jj-1)),-compr_fact*imag(NY_L2(jj-1)),0.1,0.1,'r')
end
end
grid on
title('Closed Logarithmic Nyquist Plot')
xlabel('Real aXPlotis')
ylabel('Imaginary aXPlotis')
openloop_rhp_poles = sum(real(sys_poles)>0);
fprintf(1,'Number of open-loop poles in RHP: %i\n',openloop_rhp_poles);
NY_L2=[NY_L2;transpose(circ_inf(round(end/2):end))];
[ncirc,npoles_on_im_aXPlotis] = CountEncirc(conj(NY_L2),NY_L2);
if npoles_on_im_aXPlotis > 0
fprintf(1,'%d closed-loop pole(s) on the im-aXPlotis.\n',npoles_on_im_aXPlotis);
fprintf(1,'Graph goes through the -1 point,\n');
fprintf(1,'encirclement counting infeasible.\n');
else
fprintf(1,'Number of net encirclements around the -1 point: %i\n',ncirc);
closedloop_rhp_poles=ncirc+openloop_rhp_poles;
fprintf(1,'=> Number of closed-loop poles in RHP: %i\n',...
closedloop_rhp_poles);
if closedloop_rhp_poles > 0
fprintf(1,'=> Closed-loop system is unstable\n');
else
fprintf(1,'and no closed-loop poles on Im-aXPlotis\n=> Closed-loop system is asymptotically stable\n');
end
end
%**************************************************************************
function h=CompleteNyqPlot(NY1,XPlot,compr_fact)
Np_origin=length(find(pole(XPlot.sys)==0)); % Number of poles at the origin
vv=(angle(conj(NY1)):-0.02:angle(conj(NY1))-Np_origin*pi);
delta_spiral=0.003*(Np_origin>2);
xx=max(2,abs(NY1))*(1-delta_spiral*vv).*exp(1i*vv);
if XPlot.NgPlot
plot(xx,'Color',XPlot.c,'Linewidth',XPlot.Lw,'Linestyle',':')
plot([real(xx(end)) real(NY1)],[imag(xx(end)) imag(NY1)],'Color',XPlot.c,'Linewidth',XPlot.Lw,'Linestyle','-')
plot([real(xx(1)) compr_fact*real(NY1)],[imag(xx(1)) -compr_fact*imag(NY1)],'Color',XPlot.c,'Linewidth',XPlot.Lw,'Linestyle','--')
Nr_arrow=2*Np_origin; % Number of arrows
if Nr_arrow>0
for jj=[1:Nr_arrow]
pp=jj*round(size(xx,2)/(Nr_arrow+1));
plotArrow(real(xx(pp)),imag(xx(pp)),real(xx(pp+1)),imag(xx(pp+1)),0.1,0.1,'r')
end
end
end
h=xx;
return
%**************************************************************************
function circ=ImaginaryPoleCircle(init_point,end_point_abs,mult)
vv=(angle(init_point):-0.02:angle(init_point)-mult*pi);
delta_spiral=0.003*(mult>2);
circ=linspace(abs(init_point),end_point_abs,length(vv)).*(1-delta_spiral*vv).*exp(1i*vv);
return
%**************************************************************************
function plotArrow(XPlot0,y0,XPlot,y,rXPlot,ry,c)
% Plots an arrow at (XPlot,y) along vector dXPlot=XPlot-XPlot0, dy=y-y0. The length of the arrow
% is rXPlot and ry in the directions XPlot and y. The arrow color is c.
Lw=1.2; % Linewidth
dXPlot=(XPlot-XPlot0)/rXPlot;
dy=(y-y0)/ry;
dXPloty=sqrt(dXPlot^2+dy^2);
fXPlot=-dXPlot/dXPloty;
fy=-dy/dXPloty;
rotpiu=[rXPlot,0;0,ry]*[cos(pi/6), -sin(pi/6); sin(pi/6), cos(pi/6) ]*[fXPlot,fy]';
rotmeno=[rXPlot,0;0,ry]*[cos(pi/6), sin(pi/6); -sin(pi/6), cos(pi/6) ]*[fXPlot,fy]';
plot([XPlot0,XPlot],[y0,y],'-')
plot([XPlot,XPlot+rotpiu(1)],[y,y+rotpiu(2)],c,'LineWidth',Lw)
plot([XPlot,XPlot+rotmeno(1)],[y,y+rotmeno(2)],c,'LineWidth',Lw)
return
%**************************************************************************
function Ln=PlotLogNyq(NY,n,freqs_inf,mult)
RE=real(NY);
IM=imag(NY);
MD=sqrt(RE.^2+IM.^2);
PH=atan2(IM,RE);
MD2=MD.^(log10(n));
ind=find(MD2>1);
MD2(ind)=2-1./MD2(ind);
n_freqs_inf = length(freqs_inf);
n_points = 1000/(n_freqs_inf+1);
Ln = cell(1,2*n_freqs_inf+1);
for ii = 0:n_freqs_inf-1
Ln{1,1+2*ii}=MD2(1+ii*n_points:(ii+1)*n_points).*exp(1i*PH(1+ii*n_points:(ii+1)*n_points));
circ_i=ImaginaryPoleCircle(Ln{1,1+2*ii}(end),MD2(1+(ii+1)*n_points),mult(ii+1));
Ln{1,2+2*ii}=circ_i;
end
Ln{1,end}=MD2(1+n_freqs_inf*n_points:end).*exp(1i*PH(1+n_freqs_inf*n_points:end));
return
%**************************************************************************
function [ncirc,npoles_on_im_aXPlotis] = CountEncirc(zmirr,zmain)
% Counts net encirclements around the point -1.
% An encirclement is counted as positive if the direction
% is clockwise. This follows Belanger (1995):
% "Control Engeering", Saunders College Publishing,
% pp 206 - 208.
%
% Bugs fix and improvements made in Feb. 09:
% The function now also counts poles on the im-axis for the
% closed-loop system, if any. If such poles exist, this
% corresponds to the graph going through -1.
% Encirclement counting is then impossible and is
% disabled.
% Another (small) bug fiXPloted and improvements made in June 09
eps=1e-6;
zmirr(1:end)=zmirr(end:-1:1);
zmirr=zmirr(2:end-1);
zall=[zmirr;zmain;zmirr(1)];
if abs(imag(zall(1))) < eps
zall=[zall;zall(2)];
end
ncirc=0;
npoles_on_im_aXPlotis=0;
z3=zall(end);
for k=3:length(zall)
z4=z3;
z1=zall(k);z2=zall(k-1); z3=zall(k-2);
abz1=abs(z1+1);abz2=abs(z2+1); abz3=abs(z3+1);
zre1=real(z1); zre2=real(z2);
% Checking if graph is too close to -1:
dl1= fromline2minusone(z1,z2);
dl2= fromline2minusone(z2,z3);
dl3= fromline2minusone(z3,z4);
closest_now = abz1 > abz2 && abz3 > abz2;
if closest_now && min([dl1 dl2 dl3]) < 1e-5 ...
&& min([abz1 abz2 abz3])< 0.001
npoles_on_im_aXPlotis=npoles_on_im_aXPlotis+1;
end
% end checking if graph is too close to -1.
% Only checking for Re aXPlotis crossings to the left
% of minus 0.9 to avoid unnecessary work:
if zre1 < -0.9
zim1=imag(z1); zim2=imag(z2); zim3=imag(z3);
if zim1*zim2 < 0
% Interpolation to find real z value at crossing:
delta12=(real(z1)-real(z2))*abs(imag(z2))/(abs(imag(z1))+abs(imag(z2)));
realcross=real(z2)+delta12;
end
if zim1 > eps && zim2 < -eps
if realcross < -1
ncirc=ncirc+1;% ncirc,z1, z2, z3
end
elseif zim1 < -eps && zim2 > eps
if realcross < -1
ncirc=ncirc-1;% ncirc,z1, z2, z3
end
elseif abs(zim2) < eps && zim1 > 0 && zim3 < 0
if real(z2) < -1
ncirc=ncirc+1;% ncirc,z1, z2, z3
end
elseif abs(zim2) < eps && zim3 > 0 && zim1 < 0
if real(z2) < -1
ncirc=ncirc-1;% % ncirc,z1, z2, z3
end
else
end
end % real(z1) < -0.99
end
return
% ********************************
function [distline_to_minus1] = fromline2minusone(z1,z2)
% Calcucates the min. distance from the point -1 to the line z1,z2
v=z2-z1;
v=imag(v)-1i*real(v);
v=v/abs(z2-z1);
r=z1+1;
d=dot([real(v) imag(v)],[real(r) imag(r)]');
distline_to_minus1=abs(d);
return