-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
299 lines (260 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
"""
Script for training stateful meta-reinforcement learning agents
"""
import argparse
from functools import partial
import torch as tc
from rl2.envs.bandit_env import BanditEnv
from rl2.envs.mdp_env import MDPEnv
from rl2.agents.preprocessing.tabular import MABPreprocessing, MDPPreprocessing
from rl2.agents.architectures.gru import GRU
from rl2.agents.architectures.lstm import LSTM
from rl2.agents.architectures.snail import SNAIL
from rl2.agents.architectures.transformer import Transformer
from rl2.agents.heads.policy_heads import LinearPolicyHead
from rl2.agents.heads.value_heads import LinearValueHead
from rl2.agents.integration.policy_net import StatefulPolicyNet
from rl2.agents.integration.value_net import StatefulValueNet
from rl2.algos.ppo import training_loop
from rl2.utils.checkpoint_util import maybe_load_checkpoint, save_checkpoint
from rl2.utils.comm_util import get_comm, sync_state
from rl2.utils.constants import ROOT_RANK
from rl2.utils.optim_util import get_weight_decay_param_groups
def create_argparser():
parser = argparse.ArgumentParser(
description="""Training script for RL^2.""")
### Environment
parser.add_argument("--environment", choices=['bandit', 'tabular_mdp'],
default='bandit')
parser.add_argument("--num_states", type=int, default=10,
help="Ignored if environment is bandit.")
parser.add_argument("--num_actions", type=int, default=5)
parser.add_argument("--max_episode_len", type=int, default=10,
help="Timesteps before automatic episode reset. " +
"Ignored if environment is bandit.")
parser.add_argument("--meta_episode_len", type=int, default=100,
help="Timesteps per meta-episode.")
### Architecture
parser.add_argument(
"--architecture", choices=['gru', 'lstm', 'snail', 'transformer'],
default='gru')
parser.add_argument("--num_features", type=int, default=256)
### Checkpointing
parser.add_argument("--model_name", type=str, default='defaults')
parser.add_argument("--checkpoint_dir", type=str, default='checkpoints')
### Training
parser.add_argument("--max_pol_iters", type=int, default=12000)
parser.add_argument("--meta_episodes_per_policy_update", type=int, default=-1,
help="If -1, quantity is determined using a formula")
parser.add_argument("--meta_episodes_per_learner_batch", type=int, default=60)
parser.add_argument("--ppo_opt_epochs", type=int, default=8)
parser.add_argument("--ppo_clip_param", type=float, default=0.10)
parser.add_argument("--ppo_ent_coef", type=float, default=0.01)
parser.add_argument("--discount_gamma", type=float, default=0.99)
parser.add_argument("--gae_lambda", type=float, default=0.3)
parser.add_argument("--standardize_advs", type=int, choices=[0,1], default=0)
parser.add_argument("--adam_lr", type=float, default=2e-4)
parser.add_argument("--adam_eps", type=float, default=1e-5)
parser.add_argument("--adam_wd", type=float, default=0.01)
return parser
def create_env(environment, num_states, num_actions, max_episode_len):
if environment == 'bandit':
return BanditEnv(
num_actions=num_actions)
if environment == 'tabular_mdp':
return MDPEnv(
num_states=num_states,
num_actions=num_actions,
max_episode_length=max_episode_len)
raise NotImplementedError
def create_preprocessing(environment, num_states, num_actions):
if environment == 'bandit':
return MABPreprocessing(
num_actions=num_actions)
if environment == 'tabular_mdp':
return MDPPreprocessing(
num_states=num_states,
num_actions=num_actions)
raise NotImplementedError
def create_architecture(architecture, input_dim, num_features, context_size):
if architecture == 'gru':
return GRU(
input_dim=input_dim,
hidden_dim=num_features,
forget_bias=1.0,
use_ln=True,
reset_after=True)
if architecture == 'lstm':
return LSTM(
input_dim=input_dim,
hidden_dim=num_features,
forget_bias=1.0,
use_ln=True)
if architecture == 'snail':
return SNAIL(
input_dim=input_dim,
feature_dim=num_features,
context_size=context_size,
use_ln=True)
if architecture == 'transformer':
return Transformer(
input_dim=input_dim,
feature_dim=num_features,
n_layer=9,
n_head=2,
n_context=context_size)
raise NotImplementedError
def create_head(head_type, num_features, num_actions):
if head_type == 'policy':
return LinearPolicyHead(
num_features=num_features,
num_actions=num_actions)
if head_type == 'value':
return LinearValueHead(
num_features=num_features)
raise NotImplementedError
def create_net(
net_type, environment, architecture, num_states, num_actions,
num_features, context_size
):
preprocessing = create_preprocessing(
environment=environment,
num_states=num_states,
num_actions=num_actions)
architecture = create_architecture(
architecture=architecture,
input_dim=preprocessing.output_dim,
num_features=num_features,
context_size=context_size)
head = create_head(
head_type=net_type,
num_features=architecture.output_dim,
num_actions=num_actions)
if net_type == 'policy':
return StatefulPolicyNet(
preprocessing=preprocessing,
architecture=architecture,
policy_head=head)
if net_type == 'value':
return StatefulValueNet(
preprocessing=preprocessing,
architecture=architecture,
value_head=head)
raise NotImplementedError
def main():
args = create_argparser().parse_args()
comm = get_comm()
# create env.
env = create_env(
environment=args.environment,
num_states=args.num_states,
num_actions=args.num_actions,
max_episode_len=args.max_episode_len)
# create learning system.
policy_net = create_net(
net_type='policy',
environment=args.environment,
architecture=args.architecture,
num_states=args.num_states,
num_actions=args.num_actions,
num_features=args.num_features,
context_size=args.meta_episode_len)
value_net = create_net(
net_type='value',
environment=args.environment,
architecture=args.architecture,
num_states=args.num_states,
num_actions=args.num_actions,
num_features=args.num_features,
context_size=args.meta_episode_len)
policy_optimizer = tc.optim.AdamW(
get_weight_decay_param_groups(policy_net, args.adam_wd),
lr=args.adam_lr,
eps=args.adam_eps)
value_optimizer = tc.optim.AdamW(
get_weight_decay_param_groups(value_net, args.adam_wd),
lr=args.adam_lr,
eps=args.adam_eps)
policy_scheduler = None
value_scheduler = None
# load checkpoint, if applicable.
pol_iters_so_far = 0
if comm.Get_rank() == ROOT_RANK:
a = maybe_load_checkpoint(
checkpoint_dir=args.checkpoint_dir,
model_name=f"{args.model_name}/policy_net",
model=policy_net,
optimizer=policy_optimizer,
scheduler=policy_scheduler,
steps=None)
b = maybe_load_checkpoint(
checkpoint_dir=args.checkpoint_dir,
model_name=f"{args.model_name}/value_net",
model=value_net,
optimizer=value_optimizer,
scheduler=value_scheduler,
steps=None)
if a != b:
raise RuntimeError(
"Policy and value iterates not aligned in latest checkpoint!")
pol_iters_so_far = a
# sync state.
pol_iters_so_far = comm.bcast(pol_iters_so_far, root=ROOT_RANK)
sync_state(
model=policy_net,
optimizer=policy_optimizer,
scheduler=policy_scheduler,
comm=comm,
root=ROOT_RANK)
sync_state(
model=value_net,
optimizer=value_optimizer,
scheduler=value_scheduler,
comm=comm,
root=ROOT_RANK)
# make callback functions for checkpointing.
policy_checkpoint_fn = partial(
save_checkpoint,
checkpoint_dir=args.checkpoint_dir,
model_name=f"{args.model_name}/policy_net",
model=policy_net,
optimizer=policy_optimizer,
scheduler=policy_scheduler)
value_checkpoint_fn = partial(
save_checkpoint,
checkpoint_dir=args.checkpoint_dir,
model_name=f"{args.model_name}/value_net",
model=value_net,
optimizer=value_optimizer,
scheduler=value_scheduler)
# run it!
if args.meta_episodes_per_policy_update == -1:
numer = 240000
denom = comm.Get_size() * args.meta_episode_len
meta_episodes_per_policy_update = numer // denom
else:
meta_episodes_per_policy_update = args.meta_episodes_per_policy_update
training_loop(
env=env,
policy_net=policy_net,
value_net=value_net,
policy_optimizer=policy_optimizer,
value_optimizer=value_optimizer,
policy_scheduler=policy_scheduler,
value_scheduler=value_scheduler,
meta_episodes_per_policy_update=meta_episodes_per_policy_update,
meta_episodes_per_learner_batch=args.meta_episodes_per_learner_batch,
meta_episode_len=args.meta_episode_len,
ppo_opt_epochs=args.ppo_opt_epochs,
ppo_clip_param=args.ppo_clip_param,
ppo_ent_coef=args.ppo_ent_coef,
discount_gamma=args.discount_gamma,
gae_lambda=args.gae_lambda,
standardize_advs=bool(args.standardize_advs),
max_pol_iters=args.max_pol_iters,
pol_iters_so_far=pol_iters_so_far,
policy_checkpoint_fn=policy_checkpoint_fn,
value_checkpoint_fn=value_checkpoint_fn,
comm=comm)
if __name__ == '__main__':
main()