-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.go
322 lines (275 loc) · 7.01 KB
/
model.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
package gopostagger
import (
"bufio"
"fmt"
"os"
"path/filepath"
"regexp"
"sort"
"strconv"
)
const (
startTag string = "<s>"
endTag string = "</s>"
)
// link struct stores information of two tokens and the relation between both.
type link struct {
current string
previous string // word, tag (emission) - tag, tag (transition)
occurrences float64
weight float64
}
// List of links to sort it.
type links []*link
func (l links) Len() int { return len(l) }
func (l links) Swap(i, j int) { l[i], l[j] = l[j], l[i] }
func (l links) Less(i, j int) bool { return l[i].weight < l[j].weight }
// getLink function search is called by links struct and search in whole links
// inside them to find a relation between current and previous provided.
func (l links) getLink(current, previous string) (*link, bool) {
if len(l) > 0 {
for _, sl := range l {
if sl.current == current && sl.previous == previous {
return sl, true
}
}
}
return &link{current: current, previous: previous, occurrences: 1}, false
}
// Model define a trained model based on tagged corpus. Contains emissions and
// transitions tables and tag list available.
type Model struct {
tags []string
transitions links
emissions links
}
// LoadModel function returns model instance opening transitions and emissions
// tables based on path provided.
func LoadModel(p string) (m *Model, err error) {
if l, err := filepath.Abs(p); err != nil {
return m, err
} else if _, err = os.Open(l); err != nil {
return m, err
}
var (
tp string = fmt.Sprintf("%s/transitions", p)
ep string = fmt.Sprintf("%s/emissions", p)
)
m = &Model{}
if err = m.loadTransitions(tp); err != nil {
return m, err
}
if err = m.loadEmissions(ep); err != nil {
return m, err
}
return m, err
}
// loadTransitions function opens transition table file associated to current
// model. Then parses and generates links each line.
func (m *Model) loadTransitions(p string) (err error) {
var re *regexp.Regexp = regexp.MustCompile(`\t`)
var tfd *os.File
if tfd, err = os.Open(p); err != nil {
return err
}
defer tfd.Close()
var sc *bufio.Scanner = bufio.NewScanner(tfd)
for sc.Scan() {
var ln string = sc.Text()
var data []string = re.Split(ln, -1)
if len(data) == 3 {
var w float64
if w, err = strconv.ParseFloat(data[2], 64); err != nil {
return err
}
m.transitions = append(m.transitions, &link{previous: data[0], current: data[1], weight: w})
}
}
return nil
}
// loadTransitions function opens emission table file associated to current
// model. Then parses and generates links each line.
func (m *Model) loadEmissions(p string) (e error) {
var re *regexp.Regexp = regexp.MustCompile(`\t`)
var efd *os.File
if efd, e = os.Open(p); e != nil {
return e
}
defer efd.Close()
var sc *bufio.Scanner = bufio.NewScanner(efd)
for sc.Scan() {
var line string = sc.Text()
var data []string = re.Split(line, -1)
if len(data) == 3 {
var w float64
if w, e = strconv.ParseFloat(data[2], 64); e != nil {
return e
}
m.emissions = append(m.emissions, &link{data[1], data[0], 0, w})
}
}
return nil
}
// probs function calculate word possibilities based on previous tag, with
// transmission and emission costs using Model provided. If model doesn't have
// emission record for current word, return proposed tag with '?' after.
func (m *Model) probs(cw, pt string) (ps map[string]float64, sg string) {
var ts links
for _, t := range m.transitions {
if t.previous == pt {
ts = append(ts, t)
}
}
var es links
for _, e := range m.emissions {
if e.current == cw {
es = append(es, e)
}
}
ps = make(map[string]float64, len(ts))
for _, e := range es {
var s float64 = e.weight
for _, t := range ts {
if e.current == t.previous {
s += t.weight
}
}
ps[e.previous] = s
}
if len(ps) == 0 {
var _t string = startTag
var max float64
for _, t := range ts {
if t.weight > max {
_t = t.current
max = t.weight
}
}
sg = fmt.Sprintf("%s?", _t)
}
return ps, sg
}
// Train function trains Model with corpus provided and generates transitions
// and emissions tables. Receives corpus path and return Model instance.
func Train(p string) (m *Model, err error) {
if l, err := filepath.Abs(p); err != nil {
return m, err
} else if fd, err := os.Open(l); err != nil {
return m, err
} else {
defer fd.Close()
m = &Model{tags: []string{}}
var (
data []sentence
rs *regexp.Regexp = regexp.MustCompile(`\s|\t`)
rtg *regexp.Regexp = regexp.MustCompile(`(.+)/(.+)`)
)
var sc *bufio.Scanner = bufio.NewScanner(fd)
for sc.Scan() {
var ln string = sc.Text()
var cdts []string = rs.Split(ln, -1)
var s sentence
for i, cdt := range cdts {
if g := rtg.FindStringSubmatch(cdt); len(g) > 1 {
var (
r string = g[1]
tg string = g[2]
)
var in bool = false
for _, t := range m.tags {
in = in || t == tg
}
if !in {
m.tags = append(m.tags, tg)
}
s = append(s, &token{i, r, tg})
}
}
if len(s) > 0 {
data = append(data, s)
}
}
if err := sc.Err(); err != nil {
return m, err
}
m.score(data)
}
return m, err
}
// score function calculates transitions and emissions for untrained corpus
// provided.
func (m *Model) score(data []sentence) {
var (
ts links
es links
ctx map[string]float64 = make(map[string]float64, len(m.tags)+2)
)
for _, s := range data {
var prev string = startTag
ctx[startTag]++
sort.Sort(s)
for _, t := range s {
if t, ok := ts.getLink(t.tag, prev); ok {
t.occurrences++
} else {
ts = append(ts, t)
}
if e, ok := es.getLink(t.raw, t.tag); ok {
e.occurrences++
} else {
es = append(es, e)
}
ctx[t.tag]++
prev = t.tag
}
if t, exists := ts.getLink(prev, endTag); exists {
t.occurrences++
} else {
ts = append(ts, t)
}
ctx[endTag]++
}
// Normalize weights
for _, t := range ts {
t.weight = t.occurrences / ctx[t.previous]
}
m.transitions = ts
for _, e := range es {
e.weight = e.occurrences / ctx[e.previous]
}
m.emissions = es
}
// Store function saves trained Model locally. Creates tabbed separated file
// with transitions and emissions and each weight.
func (m *Model) Store(o string) (err error) {
var l string
if l, err = filepath.Abs(o); err == nil {
if err = os.Mkdir(l, os.ModePerm); err != nil {
return err
}
var (
tp string = fmt.Sprintf("%s/transitions", l)
ep string = fmt.Sprintf("%s/emissions", l)
fdt, fde *os.File
)
if fdt, err = os.Create(tp); err == nil {
defer fdt.Close()
for _, t := range m.transitions {
var ln string = fmt.Sprintf("%s\t%s\t%g\n", t.previous, t.current, t.weight)
if _, err = fdt.WriteString(ln); err != nil {
return err
}
}
}
if fde, err = os.Create(ep); err == nil {
defer fde.Close()
for _, e := range m.emissions {
var ln string = fmt.Sprintf("%s\t%s\t%g\n", e.previous, e.current, e.weight)
if _, err = fde.WriteString(ln); err != nil {
return err
}
}
}
}
return err
}