forked from spytensor/plants_disease_detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_aug.py
148 lines (89 loc) · 3.87 KB
/
data_aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from PIL import Image,ImageEnhance,ImageFilter,ImageOps
import os
import shutil
import numpy as np
import cv2
import random
from skimage.util import random_noise
from skimage import exposure
image_number = 0
raw_path = "./data/train/"
new_path = "./aug/train/"
# 加高斯噪声
def addNoise(img):
'''
注意:输出的像素是[0,1]之间,所以乘以5得到[0,255]之间
'''
return random_noise(img, mode='gaussian', seed=13, clip=True)*255
def changeLight(img):
rate = random.uniform(0.5, 1.5)
# print(rate)
img = exposure.adjust_gamma(img, rate) #大于1为调暗,小于1为调亮;1.05
return img
try:
for i in range(59):
os.makedirs(new_path + os.sep + str(i))
except:
pass
for raw_dir_name in range(59):
raw_dir_name = str(raw_dir_name)
saved_image_path = new_path + raw_dir_name+"/"
raw_image_path = raw_path + raw_dir_name+"/"
if not os.path.exists(saved_image_path):
os.mkdir(saved_image_path)
raw_image_file_name = os.listdir(raw_image_path)
raw_image_file_path = []
for i in raw_image_file_name:
raw_image_file_path.append(raw_image_path+i)
for x in raw_image_file_path:
img = Image.open(x)
cv_image = cv2.imread(x)
# 高斯噪声
gau_image = addNoise(cv_image)
# 随机改变
light = changeLight(cv_image)
light_and_gau = addNoise(light)
cv2.imwrite(saved_image_path + "gau_" + os.path.basename(x),gau_image)
cv2.imwrite(saved_image_path + "light_" + os.path.basename(x),light)
cv2.imwrite(saved_image_path + "gau_light" + os.path.basename(x),light_and_gau)
#img = img.resize((800,600))
#1.翻转
img_flip_left_right = img.transpose(Image.FLIP_LEFT_RIGHT)
img_flip_top_bottom = img.transpose(Image.FLIP_TOP_BOTTOM)
#2.旋转
#img_rotate_90 = img.transpose(Image.ROTATE_90)
#img_rotate_180 = img.transpose(Image.ROTATE_180)
#img_rotate_270 = img.transpose(Image.ROTATE_270)
#img_rotate_90_left = img_flip_left_right.transpose(Image.ROTATE_90)
#img_rotate_270_left = img_flip_left_right.transpose(Image.ROTATE_270)
#3.亮度
#enh_bri = ImageEnhance.Brightness(img)
#brightness = 1.5
#image_brightened = enh_bri.enhance(brightness)
#4.色彩
#enh_col = ImageEnhance.Color(img)
#color = 1.5
#image_colored = enh_col.enhance(color)
#5.对比度
enh_con = ImageEnhance.Contrast(img)
contrast = 1.5
image_contrasted = enh_con.enhance(contrast)
#6.锐度
#enh_sha = ImageEnhance.Sharpness(img)
#sharpness = 3.0
#image_sharped = enh_sha.enhance(sharpness)
#保存
img.save(saved_image_path + os.path.basename(x))
img_flip_left_right.save(saved_image_path + "left_right_" + os.path.basename(x))
img_flip_top_bottom.save(saved_image_path + "top_bottom_" + os.path.basename(x))
#img_rotate_90.save(saved_image_path + "rotate_90_" + os.path.basename(x))
#img_rotate_180.save(saved_image_path + "rotate_180_" + os.path.basename(x))
#img_rotate_270.save(saved_image_path + "rotate_270_" + os.path.basename(x))
#img_rotate_90_left.save(saved_image_path + "rotate_90_left_" + os.path.basename(x))
#img_rotate_270_left.save(saved_image_path + "rotate_270_left_" + os.path.basename(x))
#image_brightened.save(saved_image_path + "brighted_" + os.path.basename(x))
#image_colored.save(saved_image_path + "colored_" + os.path.basename(x))
image_contrasted.save(saved_image_path + "contrasted_" + os.path.basename(x))
#image_sharped.save(saved_image_path + "sharped_" + os.path.basename(x))
image_number += 1
print("convert pictur" "es :%s size:%s mode:%s" % (image_number, img.size, img.mode))