forked from tech-srl/bottleneck
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiment.py
150 lines (131 loc) · 6.04 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
from torch_geometric.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
import numpy as np
import random
from attrdict import AttrDict
from common import STOP
from models.graph_model import GraphModel
class Experiment():
def __init__(self, args):
self.task = args.task
gnn_type = args.type
self.depth = args.depth
num_layers = self.depth if args.num_layers is None else args.num_layers
self.dim = args.dim
self.unroll = args.unroll
self.train_fraction = args.train_fraction
self.max_epochs = args.max_epochs
self.batch_size = args.batch_size
self.accum_grad = args.accum_grad
self.eval_every = args.eval_every
self.loader_workers = args.loader_workers
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.stopping_criterion = args.stop
self.patience = args.patience
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
print(f"Random seed: {seed}")
self.X_train, self.X_test, dim0, out_dim, self.criterion = \
self.task.get_dataset(self.depth, self.train_fraction)
self.model = GraphModel(gnn_type=gnn_type, num_layers=num_layers, dim0=dim0, h_dim=self.dim, out_dim=out_dim,
last_layer_fully_adjacent=args.last_layer_fully_adjacent, unroll=args.unroll,
layer_norm=not args.no_layer_norm,
use_activation=not args.no_activation,
use_residual=not args.no_residual,
attention_dropout=args.attention_dropout
).to(self.device)
print(f'Starting experiment')
self.print_args(args)
print(f'Training examples: {len(self.X_train)}, test examples: {len(self.X_test)}')
def print_args(self, args):
if type(args) is AttrDict:
for key, value in args.items():
print(f"{key}: {value}")
else:
for arg in vars(args):
print(f"{arg}: {getattr(args, arg)}")
print()
def run(self):
optimizer = torch.optim.Adam(self.model.parameters(), lr=0.001)
scheduler = ReduceLROnPlateau(optimizer, mode='max', threshold_mode='abs', factor=0.5, patience=10)
print('Starting training')
best_test_acc = 0.0
best_train_acc = 0.0
best_epoch = 0
epochs_no_improve = 0
for epoch in range(1, (self.max_epochs // self.eval_every) + 1):
self.model.train()
loader = DataLoader(self.X_train * self.eval_every, batch_size=self.batch_size, shuffle=True,
pin_memory=True, num_workers=self.loader_workers)
total_loss = 0
total_num_examples = 0
train_correct = 0
optimizer.zero_grad()
for i, batch in enumerate(loader):
batch = batch.to(self.device)
out = self.model(batch)
loss = self.criterion(input=out, target=batch.y)
total_num_examples += batch.num_graphs
total_loss += (loss.item() * batch.num_graphs)
_, train_pred = out.max(dim=1)
train_correct += train_pred.eq(batch.y).sum().item()
loss = loss / self.accum_grad
loss.backward()
if (i + 1) % self.accum_grad == 0:
optimizer.step()
optimizer.zero_grad()
avg_training_loss = total_loss / total_num_examples
train_acc = train_correct / total_num_examples
scheduler.step(train_acc)
test_acc = self.eval()
cur_lr = [g["lr"] for g in optimizer.param_groups]
new_best_str = ''
stopping_threshold = 0.0001
stopping_value = 0
if self.stopping_criterion is STOP.TEST:
if test_acc > best_test_acc + stopping_threshold:
best_test_acc = test_acc
best_train_acc = train_acc
best_epoch = epoch
epochs_no_improve = 0
stopping_value = test_acc
new_best_str = ' (new best test)'
else:
epochs_no_improve += 1
elif self.stopping_criterion is STOP.TRAIN:
if train_acc > best_train_acc + stopping_threshold:
best_train_acc = train_acc
best_test_acc = test_acc
best_epoch = epoch
epochs_no_improve = 0
stopping_value = train_acc
new_best_str = ' (new best train)'
else:
epochs_no_improve += 1
print(
f'Epoch {epoch * self.eval_every}, LR: {cur_lr}: Train loss: {avg_training_loss:.7f}, Train acc: {train_acc:.4f}, Test accuracy: {test_acc:.4f}{new_best_str}')
if stopping_value == 1.0:
break
if epochs_no_improve >= self.patience:
print(
f'{self.patience} * {self.eval_every} epochs without {self.stopping_criterion} improvement, stopping. ')
break
print(f'Best train acc: {best_train_acc}, epoch: {best_epoch * self.eval_every}')
return best_train_acc, best_test_acc, best_epoch
def eval(self):
self.model.eval()
with torch.no_grad():
loader = DataLoader(self.X_test, batch_size=self.batch_size, shuffle=False,
pin_memory=True, num_workers=self.loader_workers)
total_correct = 0
total_examples = 0
for batch in loader:
batch = batch.to(self.device)
_, pred = self.model(batch).max(dim=1)
total_correct += pred.eq(batch.y).sum().item()
total_examples += batch.y.size(0)
acc = total_correct / total_examples
return acc