forked from ehoogeboom/e3_diffusion_for_molecules
-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval_analyze.py
198 lines (161 loc) · 7.61 KB
/
eval_analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Rdkit import should be first, do not move it
try:
from rdkit import Chem
except ModuleNotFoundError:
pass
import utils
import argparse
from qm9 import dataset
from qm9.models import get_model
import os
from equivariant_diffusion.utils import assert_mean_zero_with_mask, remove_mean_with_mask,\
assert_correctly_masked
import torch
import time
import pickle
from configs.datasets_config import get_dataset_info
from os.path import join
from qm9.sampling import sample
from qm9.analyze import analyze_stability_for_molecules, analyze_node_distribution
from qm9.utils import prepare_context, compute_mean_mad
from qm9 import visualizer as qm9_visualizer
import qm9.losses as losses
try:
from qm9 import rdkit_functions
except ModuleNotFoundError:
print('Not importing rdkit functions.')
def check_mask_correct(variables, node_mask):
for variable in variables:
assert_correctly_masked(variable, node_mask)
def analyze_and_save(args, eval_args, device, generative_model,
nodes_dist, prop_dist, dataset_info, n_samples=10,
batch_size=10, save_to_xyz=False):
batch_size = min(batch_size, n_samples)
assert n_samples % batch_size == 0
molecules = {'one_hot': [], 'x': [], 'node_mask': []}
start_time = time.time()
for i in range(int(n_samples/batch_size)):
nodesxsample = nodes_dist.sample(batch_size)
one_hot, charges, x, node_mask = sample(
args, device, generative_model, dataset_info, prop_dist=prop_dist, nodesxsample=nodesxsample)
molecules['one_hot'].append(one_hot.detach().cpu())
molecules['x'].append(x.detach().cpu())
molecules['node_mask'].append(node_mask.detach().cpu())
current_num_samples = (i+1) * batch_size
secs_per_sample = (time.time() - start_time) / current_num_samples
print('\t %d/%d Molecules generated at %.2f secs/sample' % (
current_num_samples, n_samples, secs_per_sample))
if save_to_xyz:
id_from = i * batch_size
qm9_visualizer.save_xyz_file(
join(eval_args.model_path, 'eval/analyzed_molecules/'),
one_hot, charges, x, dataset_info, id_from, name='molecule',
node_mask=node_mask)
molecules = {key: torch.cat(molecules[key], dim=0) for key in molecules}
stability_dict, rdkit_metrics = analyze_stability_for_molecules(
molecules, dataset_info)
return stability_dict, rdkit_metrics
def test(args, flow_dp, nodes_dist, device, dtype, loader, partition='Test', num_passes=1):
flow_dp.eval()
nll_epoch = 0
n_samples = 0
for pass_number in range(num_passes):
with torch.no_grad():
for i, data in enumerate(loader):
# Get data
x = data['positions'].to(device, dtype)
node_mask = data['atom_mask'].to(device, dtype).unsqueeze(2)
edge_mask = data['edge_mask'].to(device, dtype)
one_hot = data['one_hot'].to(device, dtype)
charges = (data['charges'] if args.include_charges else torch.zeros(0)).to(device, dtype)
batch_size = x.size(0)
x = remove_mean_with_mask(x, node_mask)
check_mask_correct([x, one_hot], node_mask)
assert_mean_zero_with_mask(x, node_mask)
h = {'categorical': one_hot, 'integer': charges}
if len(args.conditioning) > 0:
context = prepare_context(args.conditioning, data).to(device, dtype)
assert_correctly_masked(context, node_mask)
else:
context = None
# transform batch through flow
nll, _, _ = losses.compute_loss_and_nll(args, flow_dp, nodes_dist, x, h, node_mask,
edge_mask, context)
# standard nll from forward KL
nll_epoch += nll.item() * batch_size
n_samples += batch_size
if i % args.n_report_steps == 0:
print(f"\r {partition} NLL \t, iter: {i}/{len(loader)}, "
f"NLL: {nll_epoch/n_samples:.2f}")
return nll_epoch/n_samples
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, default="outputs/edm_1",
help='Specify model path')
parser.add_argument('--n_samples', type=int, default=100,
help='Specify model path')
parser.add_argument('--batch_size_gen', type=int, default=100,
help='Specify model path')
parser.add_argument('--save_to_xyz', type=eval, default=False,
help='Should save samples to xyz files.')
eval_args, unparsed_args = parser.parse_known_args()
assert eval_args.model_path is not None
with open(join(eval_args.model_path, 'args.pickle'), 'rb') as f:
args = pickle.load(f)
# CAREFUL with this -->
if not hasattr(args, 'normalization_factor'):
args.normalization_factor = 1
if not hasattr(args, 'aggregation_method'):
args.aggregation_method = 'sum'
args.cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
args.device = device
dtype = torch.float32
utils.create_folders(args)
print(args)
# Retrieve QM9 dataloaders
dataloaders, charge_scale = dataset.retrieve_dataloaders(args)
dataset_info = get_dataset_info(args.dataset, args.remove_h)
# Load model
generative_model, nodes_dist, prop_dist = get_model(args, device, dataset_info, dataloaders['train'])
if prop_dist is not None:
property_norms = compute_mean_mad(dataloaders, args.conditioning, args.dataset)
prop_dist.set_normalizer(property_norms)
generative_model.to(device)
fn = 'generative_model_ema.npy' if args.ema_decay > 0 else 'generative_model.npy'
flow_state_dict = torch.load(join(eval_args.model_path, fn), map_location=device)
generative_model.load_state_dict(flow_state_dict)
# Analyze stability, validity, uniqueness and novelty
stability_dict, rdkit_metrics = analyze_and_save(
args, eval_args, device, generative_model, nodes_dist,
prop_dist, dataset_info, n_samples=eval_args.n_samples,
batch_size=eval_args.batch_size_gen, save_to_xyz=eval_args.save_to_xyz)
print(stability_dict)
if rdkit_metrics is not None:
rdkit_metrics = rdkit_metrics[0]
print("Validity %.4f, Uniqueness: %.4f, Novelty: %.4f" % (rdkit_metrics[0], rdkit_metrics[1], rdkit_metrics[2]))
else:
print("Install rdkit roolkit to obtain Validity, Uniqueness, Novelty")
# In GEOM-Drugs the validation partition is named 'val', not 'valid'.
if args.dataset == 'geom':
val_name = 'val'
num_passes = 1
else:
val_name = 'valid'
num_passes = 5
# Evaluate negative log-likelihood for the validation and test partitions
val_nll = test(args, generative_model, nodes_dist, device, dtype,
dataloaders[val_name],
partition='Val')
print(f'Final val nll {val_nll}')
test_nll = test(args, generative_model, nodes_dist, device, dtype,
dataloaders['test'],
partition='Test', num_passes=num_passes)
print(f'Final test nll {test_nll}')
print(f'Overview: val nll {val_nll} test nll {test_nll}', stability_dict)
with open(join(eval_args.model_path, 'eval_log.txt'), 'w') as f:
print(f'Overview: val nll {val_nll} test nll {test_nll}',
stability_dict,
file=f)
if __name__ == "__main__":
main()