diff --git a/NEWS.md b/NEWS.md index a0c49dd..abc232f 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,5 +1,7 @@ # bayesianVARs (development version) +* bugfix concerning VAR with factor structure on errors with homoscedastic factors. + # bayesianVARs 0.1.2 * Added minimum version to factorstochvol in the Imports field of the DESCRIPTION file in order to avoid unnecessary building errors. Thanks to Sergey Fedorov for pointing this out. diff --git a/R/bvar_wrapper.R b/R/bvar_wrapper.R index a560f4d..c9fda2c 100644 --- a/R/bvar_wrapper.R +++ b/R/bvar_wrapper.R @@ -551,7 +551,7 @@ bvar <- function(data, phi = c(rep(.8, M), rep(.8, prior_sigma$factor_factors)) + pmin(rnorm(M + prior_sigma$factor_factors, sd=.06), .095), sigma = rep(.1, M + prior_sigma$factor_factors) + rgamma(M + prior_sigma$factor_factors, 1, 10)) startlogvar <- matrix(startpara["mu",][1] + rnorm(Tobs*(M + prior_sigma$factor_factors)), Tobs, M + prior_sigma$factor_factors) - startlogvar[,M+which(isFALSE(prior_sigma$sv_heteroscedastic[-c(1:M)]))] <- 0 # !!! important, needed for factorstochvol: if factor is assumed to be homoscedastic, the corresponding column in logvar has to be 0!!! + startlogvar[,M+which(prior_sigma$sv_heteroscedastic[-c(1:M)]==FALSE)] <- 0 # !!! important, needed for factorstochvol: if factor is assumed to be homoscedastic, the corresponding column in logvar has to be 0!!! startlogvar0 <- startpara["mu",][1] + rnorm(M + prior_sigma$factor_factors) starttau2 <- if(!prior_sigma$factor_ngprior){ # if prior is 'normal' prior_sigma$factor_starttau2 diff --git a/tests/testthat/test-bvar.R b/tests/testthat/test-bvar.R index 41c7567..1ab5a68 100644 --- a/tests/testthat/test-bvar.R +++ b/tests/testthat/test-bvar.R @@ -104,7 +104,7 @@ test_that("flat prior factor", { factor_priorfacloadtype = "normal", factor_priorfacload = 1e6, factor_heteroskedastic = c(FALSE, FALSE), - factor_priorhomoskedastic = matrix(c(0.01,.01), ncol(data), 2)) + factor_priorhomoskedastic = matrix(c(1e-6,1e-6), ncol(data), 2)) set.seed(123) mod <- bvar(data, lags = 2, prior_intercept = 1e6, prior_phi = phi, prior_sigma = sigma, draws = 10000) @@ -122,7 +122,7 @@ test_that("flat prior cholesky", { cholesky_U_prior = "normal", cholesky_normal_sds = 1e6, cholesky_heteroscedastic = FALSE, - cholesky_priorhomoscedastic = matrix(c(0.01,0.01), ncol(data), 2)) + cholesky_priorhomoscedastic = matrix(c(1e-6,1e-6), ncol(data), 2)) set.seed(123) mod <- bvar(data, lags = 2, prior_intercept = 1e6, prior_phi = phi, prior_sigma = sigma, draws = 10000) @@ -131,3 +131,19 @@ test_that("flat prior cholesky", { expect_lt(max(abs(ols-phi_post_mean)),0.01) }) + +test_that("homoscedastic factor VAR input", { + data <- usmacro_growth[,c("GDPC1","CPIAUCSL","FEDFUNDS")] + phi <- specify_prior_phi(data = data, lags = 2L, prior = "normal", + normal_sds = 1e6) + sigma <- specify_prior_sigma(data = data, type = "factor", + factor_factors = 2, + factor_priorfacloadtype = "normal", + factor_priorfacload = 1e6, + factor_heteroskedastic = c(FALSE, FALSE), + factor_priorhomoskedastic = matrix(c(1e-6,1e-6), ncol(data), 2)) + + mod <- bvar(data, lags = 2, prior_intercept = 1e6, prior_phi = phi, + prior_sigma = sigma, draws = 10, burnin = 10) + expect_true(all(mod$logvar[,-seq_len(ncol(mod$Y)),]==0)) +})