-
Notifications
You must be signed in to change notification settings - Fork 1
/
tga-kinetics.py
804 lines (664 loc) · 30.4 KB
/
tga-kinetics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
import sys
import os
import tkinter as tk
from tkinter import Tk
import tkinter.ttk as ttk
from tkinter.filedialog import askopenfilenames
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import (FigureCanvasTkAgg,
NavigationToolbar2Tk)
from scipy.interpolate import UnivariateSpline
import pylightxl as xl
from numpy import ones,diag
from scipy.optimize import minimize,basinhopping,newton
from numpy.linalg import norm,solve
import time
from scipy.sparse import diags,csc_matrix
from scipy.sparse.linalg import spsolve
import time
import datetime
import cma
def nonlinear(x,n): # not used in program.
# if 40 < n < 92, empirical function to get better starting position
# for Y_linear to give to newton_system_trap. Not well done,is slower and
# yields worse results. Should be re-parameterized with another function
return np.exp(7.457309871653051 -0.09198587680969814*n)*x**(3.239250503132271 -0.02799505738572956*n)*np.exp(-(12.017401311759613 -0.07096770044261062*n)*x)
infile_columns = ['t','T','m_exp']
data = {'t':[],'T':[],'m_exp':[],'x_exp':[]}
data_calc = {'t':[],'T':[],'x_exp':[],'dx_exp':[]}
info = {'n_data':0,'filenames':[],'current_exp':0,
'T_start':[],'T_end':[],'t_start':[],'t_end':[],
's.factor':[],'n_points':[],'mass norm. temp.':[],
'max':[]}
root = Tk()
root.geometry('850x475')
root.title('tga-kinetics.py')
tab_control = ttk.Notebook(root,)
tabs = [tk.Frame(tab_control) for i in range(5)]
tab_labels = ['Input','Kinetic options','Optimization options','Results','Export...']
for tab,label in zip(tabs,tab_labels):
tab_control.add(tab,text=label)
tab_control.pack(side=tk.TOP,anchor='nw',ipady=0,ipadx=0)
################
"""Input tab"""
################
def read_ascii(filename):
# Read data from regular ascii format documents
loaded_data = np.loadtxt(filename)
for column,key in enumerate(infile_columns):
data[key].append(loaded_data.T[column])
def read_excel(filename):
# Read data from excel documents
db = xl.readxl(filename)
loaded_data = [] # tmp storage t,T,x
for i,row in enumerate(db.ws(ws='Sheet1').rows):
loaded_data.append(row)
loaded_data = np.array(loaded_data[1:])
for column,key in enumerate(infile_columns):
data[key].append(loaded_data.T[column])
def normalize_mass(i):
# calculate normalized mass reaction rate or conversion
#e = np.where(data['T'][i]<float(info['T_end'][i]))[0][-1] # end index
s = np.where(data['T'][i]>float(info['mass norm. temp.'][i]+273.15))[0][0] # start index
# add possibility to choose where to calc conversion
# add possibility to calculate normalized mass instead of conv.
data['x_exp'][i] = (data['m_exp'][i])/(data['m_exp'][i][s])
def ask_to_close_window():
# Popoup to ask closing the window if data allready exists.
error_window = Tk()
error_window.geometry('150x150')
error_text = " \nClose and restart the program to load new experimental data\n"
popup = tk.Message(error_window,text=error_text)
popup.grid(row=1,column=1)
def Try_read_data():
if info['n_data']: # if data llready exists, ask to restart the program
ask_to_close_window()
else:
Read_data()
t0['select_data_btn'].grid_remove()
def Read_data():
filenames = []
"""
Read data from a text file and appends to data dictionary.
Data structure should be:
# t T (C) x dx
t_1 T_1 x_1 dx_1
t_2 T_2 x_2 dx_2
t_3 T_3 x_3 dx_3
...
t_n T_n x_n dx_n
"""
files = askopenfilenames()
clear_info = [0,[],0,[],[],[],[],[],[],[],[],[],[],[]]
#if info['n_data']: # if data llready exists, ask to restart the program
for filename in files:
filenames.append(filename.split('/')[-1].split('.')[0]) # for filename display
if 'xls' in filename.split('.')[-1]:
read_excel(filename)
else:
read_ascii(filename)
extract_info_from_data(filenames)
Plot_raw_data()
write_info_text()
choose_experiment()
def extract_info_from_data(filenames):
info['n_data'] = len(data['T'])
info['filenames']=filenames
#add derivative
data['dx_exp'] = {}
for n in range(info['n_data']):
data['T'][n] += 273.15
data['x_exp'].append(1)
info['s.factor'].append(1e-4)
info['T_start'].append(data['T'][n][0])
info['t_start'].append(data['t'][n][0])
info['T_end'].append(data['T'][n][-1])
info['t_end'].append(data['t'][n][-1])
info['mass norm. temp.'].append(100)
normalize_mass(n)
spl = UnivariateSpline(data['t'][n],data['x_exp'][n],s=info['s.factor'][n])
data['dx_exp'][n] = spl.__call__(data['t'][n],nu=1)*(-1) # first derivative
info['max'].append(max(data['dx_exp'][n]))
#info['n_points'].append(len(data['t'][n]))
info['n_points'].append(100)
def cut(n):
# Determine the shortest array from t_/T_start and t_/T_end and cut data
#accordingly. Returns the cut indices start_indice, end_indice
i_min = 0
i_max = len(data['t'][n])
for var in ['t','T']:
tmp_min = np.where(data[var][n]>=info[var+'_start'][n])[0]
tmp_max = np.where(data[var][n]>=info[var + '_end'][n])[0]
if len(tmp_min):
i_min = max(i_min,tmp_min[0])
if len(tmp_max):
i_max = min(i_max,tmp_max[0])
return i_min,i_max
def Plot_raw_data():
"""
Plot the raw data in the data dict.
"""
i = info['current_exp']
f,ax = plt.subplots(1,figsize=(6,3))
s,e = cut(i) # s = start, e = end values to plot
ax.plot(data['t'][i][s:e],data['dx_exp'][i][s:e],label='dm_norm/dt',c='k',ls='--')
ax.set(xlabel='time',ylabel='reaction rate')
aT = ax.twinx()
aT.plot(data['t'][i][s:e],data['T'][i][s:e],label='T (K)',c='C3',ls='--')
aT.set(ylabel='temperature (K)')
f.legend(loc='upper center',frameon=False,ncol=2,bbox_to_anchor=(0.5,1.025))
plt.tight_layout()
#plt.show()
# Embed plot in tkinter
if t0['fig_exp']:
t0['fig_exp'].get_tk_widget().update()
t0['fig_exp'] = FigureCanvasTkAgg(f,master = tabs[0])
t0['fig_exp'].draw()
t0['fig_exp'].get_tk_widget().grid(row=1,rowspan=16,column=2,ipady=20,ipadx=4,padx=4,sticky=tk.W)
t0['plot_header'] = tk.Label(tabs[0],text='-- '+ info['filenames'][info['current_exp']] +' --')
t0['plot_header'].grid(row=0,column=2)
# add toolbake
toolbarFrame = tk.Frame(tabs[0])
toolbarFrame.grid(row=18,column=2,sticky=tk.W)
toolbar = NavigationToolbar2Tk(t0['fig_exp'], toolbarFrame)
toolbar.pack()
toolbar.update()
plt.close() # do not display figure in spyder when using interactive mode
def Accept_data():
# Read in data from entry for info tables
n = info['current_exp']
for row,var in enumerate(info_vars):
val = float(t0['etr'][var].get())
info[var][n] = val #accept all values as given in entry
s,e = cut(n)
for var in info_vars:
if '_start' in var:
val = max(info[var][n],data[var[0]][n][0],data[var[0]][n][s])
info[var][n]=val #update with correct minimum limit
#val = data[var[0]][n][s]
elif '_end' in var:
val = val = min(info[var][n],data[var[0]][n][-1],data[var[0]][n][e])
info[var][n]=val #update with correct maximum limit
elif 'n_points' in var:
val = int(len(data['t'][n])/(max(int(len(data['t'][n])/info[var][n]),1)))-1
info[var][n]=val
normalize_mass(n)
spl = UnivariateSpline(data['t'][n],data['x_exp'][n],s=info['s.factor'][n])
data['dx_exp'][n] = spl.__call__(data['t'][n],nu=1)*(-1) # first derivative
Plot_raw_data()
create_equally_spaced_data()
write_info_text()
def create_equally_spaced_data():
# Create equally spaced datapoints according to input from
# info['n_points'] and save this to data_calc, which will be used
# to perform the actual calculations because implicit integration
# can be expensive. If over 300 points sparse matrix can be used.
if not data_calc['t']: # if no exisiting data, create new dict
for var in ['t','T','m_exp','dx_exp']:
data_calc[var] = [[]]*info['n_data']
n_d = info['current_exp']
s,e = cut(n_d)
length = len(data['t'][n_d][s:e])
step = max(int(length/info['n_points'][n_d]),1)
for var in ['t','T','m_exp','dx_exp']:
data_calc[var][n_d]=data[var][n_d][s:e:step]
info['max'][n_d] = max(data_calc['dx_exp'][n_d])
info['n_points'][n_d] = len(data_calc['t'][n_d])
def write_info_text():
# Write information extracted from experimental data for display and
# to edit the input data
n = info['current_exp']
s,e = cut(n)
for row,var in enumerate(info_vars):
txt = var
t0['txt'][var] = tk.Text(tabs[0],width='19',height='1')
if var =='s.factor':
txt ='smoothing, (1e-2)'
elif var == 'mass norm. temp.':
txt += (',K')
t0['txt'][var].insert('1.0',txt)
t0['txt'][var].grid(row=1+row,column=0)
t0['etr'][var] = tk.Entry(tabs[0],width='8')
t0['etr'][var].grid(row=1+row,column=1)
# Needed to avoid getting many deciamls in 4some entry widgets
if var == 'n_points' or var =='s.factor':
val = str(info[var][n])
else:
val = str(round(info[var][n],3))
t0['etr'][var].insert(0,val)
def choose_experiment():
t0['cb'] = ttk.Combobox(tabs[0],textvar=t0['cb_var'],width=5,state='readonly')
t0['cb']['values'] = tuple([str(i+1) for i in range(info['n_data'])] )
t0['cb'].current(0)
t0['cb'].grid(row=len(info_vars)+2,column=1)
def Change_experiment():
info['current_exp'] = t0['cb'].current()
write_info_text()
Plot_raw_data()
info_vars = ['T_start','T_end','t_start','t_end','s.factor','n_points','mass norm. temp.']
#tabs[0] dict of all widgets
t0 = {'text_exp':{},'fig_exp':{},'txt':{},'etr':{},'cb':0,'cb_var':tk.StringVar()}
t0['select_data_btn'] = tk.Button(tabs[0],text=' '*6+'Select data'+' '*6,command=Try_read_data)
t0['select_data_btn'].grid(row=0,column=0,sticky=tk.W)
tk.Button(tabs[0],text='Change experiment',command=Change_experiment).grid(row=len(info_vars)+2,column=0)
tk.Button(tabs[0],text='{:>12s}'.format(' '*5+ 'Accept data' + ' '*6),command=Accept_data,fg='green').grid(row=len(info_vars)+1,column=0,sticky=tk.W)
##########################
"""Kinetic options tab"""
##########################
def Accept_kinetics():
hide_show_kinetic_options()
def get_kinetic_options():
t1['n_part'] = tk.IntVar()
tk.Label(tabs[1],text='{:<29}'.format('Number of partial components:')).grid(row=0,column=0,sticky=tk.W)
#tk.Label(tabs[1],text='{:<29}'.format('Accept n_partial components.:')).grid(row=1,column=0,columnspan=3,sticky=tk.E)
for n in range(3):
tk.Radiobutton(tabs[1],text=str(n+1),variable=t1['n_part'],value=n,command=Accept_kinetics).grid(row=0,column=n+1)
#for n,var in enumerate(['A','E','n']):
# t1['common_params'][var] = tk.IntVar()
# btn = tk.Checkbutton(tabs[1],text=var,variable=t1['common_params'][var],onvalue=1,offvalue=0,state=tk.DISABLED)
# btn.grid(row=1,column=n+1)
# btn.select()
#tk.Button(tabs[1],text='\u221a',command=Accept_kinetics,fg='green').grid(row=1,column=4)
def write_kinetic_options():
description={'A':['Frequency factor','log10'],'E':['Activation energy','kj/mol'],
'n':['Reaction order','-'],'c':['Scaling factor','-']}
init_vals = [8,200,1,0.2] # A, E , n
steps =[0.25,20,0,0]
#defaults = {var:[val]*n_exp for var,val in zip(description.keys(),init_vals)}
#defaults = {var:[val] for var,val in zip(description.keys(),init_vals)}
defaults_part={var:[init_vals[i]+k*steps[i] for k in range(3)] for i,var in enumerate(description.keys())}
mult = len(init_vals) # row multiplier for construction of table
# Partial component iterator to construct table
for n in range(3):
t1['part_txt'][n] = tk.Label(tabs[1],text='Initial values partial component nr. '+str(n+1)+ ' | Common experimental parameter:')
t1['part_txt'][n].grid(row=2+(mult+1)*n,column=0,columnspan=5)
# Experiment iterator to construct table
for n in range(3):
for row,var in enumerate(description.keys()):
t1['description'][var][n] = tk.Label(tabs[1],text='{:<22} {:>5}'.format(description[var][0],description[var][1]))
t1['description'][var][n].grid(sticky=tk.W,row=row+3+(mult+1)*n,column=0)
t1[var][n]=tk.Entry(tabs[1],width='5')
t1[var][n].grid(row=row+3+(mult+1)*n,column=1)
t1[var][n].insert(0,defaults_part[var][n])
t1['fixed'][var][n] = tk.IntVar()
t1['fixed_btns'][var][n] = tk.Checkbutton(tabs[1],text='constant',variable=t1['fixed'][var][n],onvalue=1,offvalue=0)
t1['fixed_btns'][var][n].grid(row=row+3+(mult+1)*n,column=2)
t1['common_params'][var][n] = tk.IntVar()
t1['common_btns'][var][n] = tk.Checkbutton(tabs[1],text=var,variable=t1['common_params'][var][n],onvalue=1,offvalue=0)
t1['common_btns'][var][n].grid(row=2+(mult+1)*n,column=6+row)
t1['common_btns'][var][n].select()
def hide_show_kinetic_options():
# Hide or show kinetic options for partial components
# when checkbutton is clicked. Hide all then show n_part of widgets
for n in range(3):
t1['part_txt'][n].grid_remove()
for var in ['A','E','n','c']:
t1[var][n].grid_remove()
t1['description'][var][n].grid_remove()
t1['fixed_btns'][var][n].grid_remove()
t1['common_btns'][var][n].grid_remove()
for n in range(t1['n_part'].get()+1):
t1['part_txt'][n].grid()
for var in ['A','E','n','c']:
t1[var][n].grid()
t1['description'][var][n].grid()
t1['fixed_btns'][var][n].grid()
t1['common_btns'][var][n].grid()
t1 = {'A':{},'E':{},'n':{},'c':{},'common_params':{'A':{},'E':{},'n':{},'c':{}},'n_part':1,'part_txt':{},
'description':{'E':{},'A':{},'n':{},'c':{}},'fixed':{'A':{},'E':{},'n':{},'c':{}},
'fixed_btns':{'A':{},'E':{},'n':{},'c':{}},'common_btns':{'A':{},'E':{},'n':{},'c':{}}}
get_kinetic_options()
write_kinetic_options()
hide_show_kinetic_options()
###############################
"""Optimization options tab"""
###############################
def write_optimization_options():
defaults = dict(t2)
description={
'method':'Optimiztion method',
'maxiter':'Maximum optimization iterations\nCMA-ES: function tolerance (e.g. 1e-7)',
'newton_tol':'Non-linear eq. solution tolerance',
'newton_maxiter':'Maximum non-linear eq. solving iterations'}
for n,key in enumerate(description.keys()):
tk.Label(tabs[2],text=description[key]).grid(row=n,column=0,sticky=tk.W)
if key =='method':
t2[key] = ttk.Combobox(tabs[2],textvar=t2['method_var'],width=12,state='readonly')
t2[key]['values'] = tuple(method for method in ['Nelder-mead','CMA-ES','Powell'] )
t2[key].current(0)
else:
t2[key] = tk.Entry(tabs[2],width=10)
t2[key].grid(row=n,column=1)
t2[key].insert(0,defaults[key])
t2 = {'method_var':tk.StringVar(),'method':'Nelder-mead','newton_tol':1e-3,
'newton_maxiter':5,'maxiter':500}
def run_optimization():
print('Calculating...')
t2['N'] = [len(data_calc['t'][n_d])-1 for n_d in range(info['n_data'])]
t2['n_p']=t1['n_part'].get()+1
t2['n_d']=info['n_data']
t2['dt'] = [(info['t_end'][i] - info['t_start'][i])/t2['N'][i] for i in range(info['n_data'])]
p = calc_p_num()
#for n_p in range(t2['n_p']): # add scaling factor x_t = p[-1]*x_1 + p[-2]*x_2
# p.append(1/t2['n_p']) # could set it so that x1 = p[-1],x2=1-p[-1] and they sum to one
t3['nonlinear'] = 0 #nonlinear-equation solving time
if t2['method_var'].get()=='CMA-ES':
xopt,res = cma.fmin2(of, p, 0.5,options={'tolfun':t2['maxiter'].get()})
class result:
x = xopt
fun = res.result[1]
t2['res'] = result
else:
t2['res'] = minimize(of,p,method=t2['method_var'].get(),options={'maxiter':int(t2['maxiter'].get())})
calc_from_res(t2['res'].x)
t2['p_letters'] = calc_p()
write_result(t2['p_letters'],t2['res'])
def of(p):
# The objective function to be minimized.
r = calc_r_num(p)
y=0
for i in range(t2['n_d']):
y_p = 0
for n in range(t2['n_p']):
A = tridiag(t2['N'][i],[r[0][n][i],r[1][n][i],r[2][n][i]*100],t2['dt'][i],data_calc['T'][i])
A[0][0] = 1
b=np.zeros(t2['N'][i])
b[0] = 1 # initial condition: y0 = 1
Y_ = solve(A,b)
t0_py = time.time()
Y_trap = newton_system_trap(func_trap, jac_trap, Y_, [r[0][n][i],r[1][n][i],r[2][n][i]*100],
t2['dt'][i],data_calc['T'][i],t2['N'][i],tol=float(t2['newton_tol'].get()),max_iter=int(t2['newton_maxiter'].get()))
t1_py = time.time()
t3['nonlinear'] += (t1_py-t0_py)
#y +=np.sum((data_calc['x_exp'][i][:-1]-Y_trap)**2)
#y_p+=(r[3][n][i]*10**(r[0][n][i])*np.exp(-r[1][n][i]*1000/(8.3145*data_calc['T'][i][:-1]))*Y_trap**(r[2][n][i]))
# The above fluctuates at high conversion values
y_p+=(r[3][n][i]*(Y_trap[:-1]-Y_trap[1:])/t2['dt'][i])
y += np.sum(((y_p-data_calc['dx_exp'][i][:-2])**2))/(t2['N'][i]*info['max'][i]**2)
return y
def calc_p_num():
# Calculate the initial value list p to pass to scipy.minimize function.
# One has to take into account fixed values when creating the list
p=[]
for n_v,var in enumerate(['A','E','n','c']):
for n_p in range(t2['n_p']):
if t1['common_params'][var][n_p].get() and not t1['fixed'][var][n_p].get():
p.append(float(t1[var][n_p].get()))
elif not t1['fixed'][var][n_p].get():
for n_d in range(t2['n_d']):
p.append(float(t1[var][n_p].get()))
return p
def calc_p():
p=[]
for n_v,var in enumerate(['A','E','n','c']):
for n_p in range(t2['n_p']):
if t1['common_params'][var][n_p].get() and not t1['fixed'][var][n_p].get():
p.append(var+str(n_p))
elif not t1['fixed'][var][n_p].get():
for n_d in range(t2['n_d']):
p.append(var+str(n_p)+str(n_d))
return p
def calc_r_num(p):
# calculate a 3D list such that r[var][n_p][n_d],where var is 'A':0,'E':1,'n':0,
# n_p is partial component, and n_d is experiment a.k.a data number. The
# r 3D list then yields the correct value from either the constant value
#for this variable or the value p[i] from the scipy.minimize list p. Negative
# values not allowed in optimization. Thus abs() is added.
i = 0 # keep track of index i
r = []
for n_v,var in enumerate(['A','E','n','c']):
m = []
for n_p in range(t2['n_p']):
n = []
if t1['common_params'][var][n_p].get():
if t1['fixed'][var][n_p].get():
for n_d in range(t2['n_d']):
n.append(float(t1[var][n_p].get()))
else:
for n_d in range(t2['n_d']):
n.append(abs(p[i]))
i+=1
m.append(n)
else:
if t1['fixed'][var][n_p].get():
for n_d in range(t2['n_d']):
n.append(float(t1[var][n_p].get()))
else:
for n_d in range(t2['n_d']):
n.append(abs(p[i]))
i+=1
m.append(n)
r.append(m)
return r
def calc_from_res(p):
# calculate conversion, error% etc from optimization results
# and store values to dict
r = calc_r_num(p)
print('\nResult:\n',p)
t3['err%']=[]
for i in range(t2['n_d']):
Y_part = 0
DY_part = 0
t3['dx_calc'][i] = []
t3['x_calc'][i] = []
for n in range(t2['n_p']):
s,e = cut(i)
A = tridiag(t2['N'][i],[r[0][n][i],r[1][n][i],r[2][n][i]*100],t2['dt'][i],data_calc['T'][i])
A[0][0] = 1
b=np.zeros(t2['N'][i])
b[0] = 1 # initial condition: y0 = 1
Y_ = solve(A,b)
Y_trap = newton_system_trap(func_trap, jac_trap, Y_, [r[0][n][i],r[1][n][i],r[2][n][i]*100],
t2['dt'][i],data_calc['T'][i],t2['N'][i])
t3['dx_calc'][i].append(r[3][n][i]*(Y_trap[:-1]-Y_trap[1:])/t2['dt'][i])
t3['x_calc'][i].append(r[3][n][i]*Y_trap)
Y_part += r[3][n][i]*Y_trap
DY_part +=t3['dx_calc'][i][n]
t3['err%'].append(np.sqrt(np.sum((DY_part-data_calc['dx_exp'][i][:-2])**2)/(t2['N'][i]*info['max'][i]**2))*100)
plot_results(t2['res'].x)
print('Nonlinear solution time:',round(t3['nonlinear'],3),'s.')
write_optimization_options()
run_btn = tk.Button(tabs[2],text='Run calculation',command=run_optimization,fg='green')
run_btn.grid(row=10,column=0,sticky=tk.W)
###############
#MATRIX METHODS
################
def tridiag(N,p,dt,T):
#T_s/T_e T_start/T_end, T = experimental temp.
# p = list of E A n in order [E,A,n]
e = ones(N) # array [1,1,...,1] of length N
A = (-1)*diag(e[1:],-1)+diag(1+dt*10**(p[0])*np.exp(-(p[1]*1000)/(8.315*T[1:])))
return A
def jac_trap(y,p,dt,T,N):
y = y.clip(1e-16) # nexxessary
e = ones(N) # array [1,1,...,1] of length N
A = diag(-1+e[1:]*0.5*dt*(10**(p[0]))*(p[2]/100)*np.exp(-(p[1]*1000)/(8.315*T[:-2]))*y[:-1]**(p[2]/100-1),-1)+diag(1+0.5*dt*(10**(p[0]))*(p[2]/100)*np.exp(-(p[1]*1000)/(8.315*T[1:]))*y**(p[2]/100-1))
A[0][0]=1
return A
def newton_system_trap(func, jac, x0,p,dt,T,N, tol =1e-4, max_iter=20):
x = x0
for k in range(max_iter):
fx = func(x,p,dt,T)
if norm(fx, np.inf) < tol: # The solution is accepted.
break
Jx = jac(x,p,dt,T,N)
delta = solve(Jx, -fx)
x = x + delta
x = x.clip(0) #if x<0 replace by 0 to avoid numerical issues
return x
def func_trap(x,p,dt,T):
#x = x.clip(1e-12) # add if errors
y = np.array([-x[:-1]+x[1:]+0.5*dt*10**(p[0])*np.exp(-(p[1]*1000)/(8.315*T[1:-1]))*(x[1:])**(p[2]/100)+ 0.5*dt*10**(p[0])*np.exp(-(p[1]*1000)/(8.315*T[:-2]))*(x[:-1])**(p[2]/100)])
y = np.insert(y,0,0) #y_0 - 1 = 1 - 1 = 0
return y
#################
"""Results tab"""
#################
def tabnew(j):
# write either a tab or newline character in result text
# should be placed in t3['results'] and j updated with += 1 directly after
if j%2 == 0:
return ' '*4
elif j%2 == 1:
return '\n'
def write_result(p,res):
print('OF = {:.3e}'.format(res.fun))
t3['results'].delete('1.0','end')
#Estimated value results
t3['results'].insert('end',' Estimated:\n')
j = 0
for p_i,res_i in zip(p,res.x):
t3['results'].insert('end','{:<3s}={:>7.3f}'.format(p_i,abs(res_i))+tabnew(j))
j+=1
#Fixed values
if tabnew(j)=='\n':
next_del = '\n\n '
else:
next_del = '\n '
t3['results'].insert('end',next_del+'Fixed:\n')
if sum([int(t1['fixed'][var][n_p].get()) for var in ['A','E','n','c'] for n_p in range(t2['n_p']) ]) == 0:
t3['results'].insert('end','None\n')
else:
for var in ['A','E','n','c']:
for n_p in range(t2['n_p']):
if t1['fixed'][var][n_p].get():
t3['results'].insert('end','{:<3s}={:>7.3f}'.format(var+str(n_p),float(t1[var][n_p].get()))+tabnew(j))
j+=1
#Function result
t3['results'].insert('end','\nOF={:>7.2e}\n'.format(res.fun))
# error in %
#t3['results'].insert('end','\nErr%={:>7.2f}'.format(np.sqrt(res.fun)*100/info['n_data']))
def change_result_plot_experiment():
t3['fig_result'][t3['current_res_exp']].get_tk_widget().grid_remove()
t3['plot_header'][t3['current_res_exp']].grid_remove()
t3['current_res_exp'] +=1
t3['current_res_exp'] %=t2['n_d']
t3['fig_result'][t3['current_res_exp']].get_tk_widget().grid()
t3['plot_header'][t3['current_res_exp']].grid()
def plot_results(p):
#p = t2['res'].x
c_np = ['C2','C4','C6'] # partial component colors
t3['fig_result'] = {}
t3['plot_header']={}
for i in range(t2['n_d']):
f_r,(ax_r) = plt.subplots(1,1,figsize=(6,3))
s,e = cut(i) # s = start, e = end values to plot
ax_r.plot(data['t'][i][s:e],data['dx_exp'][i][s:e],label='exp',c='k',ls='--')
DY = 0
for n_p in range(t2['n_p']): # partial component conversion data
DY += t3['dx_calc'][i][n_p]
ax_r.plot(data_calc['t'][i][:-2],t3['dx_calc'][i][n_p],label='calc'+str(n_p),c=c_np[n_p],ls='--')
if t2['n_p']> 1: # add sum of partial components to plot only if > 1
ax_r.plot(data_calc['t'][i][:-2],DY,label='sum',c='C3')
ax_r.set(xlabel='time',ylabel='reaction rate')
f_r.legend(loc='upper center',frameon=False,ncol=t2['n_p']+2,bbox_to_anchor=(0.5,1.025))
plt.tight_layout()
# add figure to tkinter
t3['fig_result'][i] = FigureCanvasTkAgg(f_r,master = tabs[3])
t3['fig_result'][i].get_tk_widget().grid(row=1,columnspan=2,column=1,ipady=20,ipadx=4,padx=4,sticky=tk.W)
t3['fig_result'][i].draw()
t3['plot_header'][i] = tk.Label(tabs[3],text='-- '+ info['filenames'][i] +' --\n'+
'err%={:3.2f}'.format(t3['err%'][i]))
t3['plot_header'][i].grid(row=0,column=1)
plt.close()
t3['fig_result'][i].get_tk_widget().grid_remove()
t3['plot_header'][i].grid_remove()
toolbarFrame = tk.Frame(tabs[3])
toolbarFrame.grid(row=18,column=1,sticky=tk.W,columnspan=2)
toolbar = NavigationToolbar2Tk(t3['fig_result'][i], toolbarFrame)
toolbar.pack()
toolbar.update()
t3['fig_result'][t3['current_res_exp']].get_tk_widget().grid()
t3['plot_header'][t3['current_res_exp']].grid()
t3 = {'results':tk.Text(tabs[3],height=27,width=29),'dx_calc':{},'x_calc':{},
'current_res_exp':0}
t3['results'].grid(row=0,column=0,rowspan=4)
t3['results'].configure(font=("Times new roman", 10))
tk.Button(tabs[3],text='Next exp.',command=change_result_plot_experiment).grid(row=0,column=2,sticky=tk.W)
###################
"""--Export tab-"""
###################
def export_optimization_results(p,res):
# fuction to write estimated parameters, fixed parameters and errors in %.
s = ' OPTIMIZATION RESULTS'
#Estimated value results
s+= '\n\nEstimated:\n'
j = 0
for p_i,res_i in zip(p,res.x):
s+='{:<3s}={:>7.3f}'.format(p_i,abs(res_i))+tabnew(j)
j+=1
#Fixed values'
s+='\n\nFixed:\n'
if sum([int(t1['fixed'][var][n_p].get()) for var in ['A','E','n','c'] for n_p in range(t2['n_p']) ]) == 0:
s+='None\n'
else:
j=0
for var in ['A','E','n','c']:
for n_p in range(t2['n_p']):
if t1['fixed'][var][n_p].get():
s+='{:<3s}={:>7.3f}'.format(var+str(n_p),float(t1[var][n_p].get()))+tabnew(j)
j+=1
#Error percent and objective function result
s+='\n\nerror%\n'
for i in range(t2['n_d']):
s+='exp. '+str(i+1)+': '+str(round(t3['err%'][i],2))+'%\n'
s+='\nOF={:>7.2e}\n\n'.format(res.fun)
return s
def delim(i):
if i%3 == 0:
return '\n'
else:
return '\t'
def export_experimental_info():
# write the experimental information used to calculate the results
s =' EXPERIMENTAL INFORMATION'
for n_d in range(t2['n_d']):
s+='\n\nExp. ' + str(n_d+1)+ ' : '+info['filenames'][n_d]+'\n\n'
for key in info_vars+['max']:
if key == 'max':
s+= '{:<16} : {:<12.3e}'.format(key+ ' react. rate',info[key][n_d])+'\n'
else:
s+= '{:<16} : {:<12}'.format(key,str(info[key][n_d]))+'\n'
return s
def save_info():
# save data info
infofile = open(t4['export_entry'].get()+'_info.txt','w')
infofile.write(export_optimization_results(t2['p_letters'], t2['res']))
infofile.write(export_experimental_info())
infofile.close()
def create_header(header_file_list):
header = ''
for header_file in header_file_list:
for header_i in header_file:
header+=header_i + ' '
return header
def save_data(filename):
# save experimental and calculated data
fmt = ['%.3f','%10.3f','%10.3e']+['%10.3f']*t2['n_p']+['%10.3e']*t2['n_p']
for n_d in range(t2['n_d']):
header = ' time'+' m_norm_exp'+str(n_d)+' dm_exp'+str(n_d) + ''
for n_p in range(t2['n_p']):
header +=' m_calc'+str(n_d)+str(n_p)
for n_p in range(t2['n_p']):
header +=' dm_calc'+str(n_d)+str(n_p)
dx_calc = np.c_[[t3['dx_calc'][n_d][n_p] for n_p in range(t2['n_p'])]].T
x_calc = np.c_[[t3['x_calc'][n_d][n_p] for n_p in range(t2['n_p'])]].T
to_save = np.c_[data_calc['t'][n_d][:-2],data_calc['m_exp'][n_d][:-2].T,data_calc['dx_exp'][n_d][:-2].T,
x_calc[:-1],dx_calc]
np.savetxt(filename+'_data_'+str(n_d)+'.txt',to_save,fmt=fmt,header=header)
#np.savetxt(t4['export_entry'].get()+'_data.txt',to_save,header=header)
def save_text():
save_info()
save_data(t4['export_entry'].get())
print('Saved to '+t4['export_entry'].get() + '_info.txt and\n'+t4['export_entry'].get() +' _(d)x_data.txt')
t4 = {'export_entry':tk.Entry(tabs[4],text='filename',width=20)}
t4['export_entry'].grid(row=0,column=1)
t4['export_entry'].insert('1',str(datetime.datetime.now()).split('.')[0].split(' ')[0])
tk.Button(tabs[4],text='Save data',command=save_text).grid(row=1,column=0)
tk.Label(tabs[4],text='filename:').grid(row=0,column=0)
##############
"""--END--"""
##############
root.mainloop()
#input('Press <Enter> to end the program\n') # avoid closing after loading data in windows