-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathRadio.py
547 lines (457 loc) · 20.8 KB
/
Radio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#**************************************************************************
# Copyright (C) 2018, Paul Lutus *
# *
# This program is free software; you can redistribute it and/or modify *
# it under the terms of the GNU General Public License as published by *
# the Free Software Foundation; either version 2 of the License, or *
# (at your option) any later version. *
# *
# This program is distributed in the hope that it will be useful, *
# but WITHOUT ANY WARRANTY; without even the implied warranty of *
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
# GNU General Public License for more details. *
# *
# You should have received a copy of the GNU General Public License *
# along with this program; if not, write to the *
# Free Software Foundation, Inc., *
# 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
#**************************************************************************
import re
import sys
import os
import time
import struct
import signal
import numpy as np
import osmosdr
from PyQt5 import QtCore
from PyQt5 import QtGui
from PyQt5.QtWidgets import QWidget
from gnuradio import analog
from gnuradio import audio
from gnuradio import blocks
from gnuradio import filter
from gnuradio import gr
from gnuradio.filter import firdes
from gnuradio.fft import logpwrfft
import sip
class DrawGraphics(QtCore.QObject):
draw = QtCore.pyqtSignal()
# a convenience class to acquire data from Gnuradio
class MyVectorSink(gr.sync_block):
def __init__(self,main,sz):
self.main = main
self.sz = sz
gr.sync_block.__init__(
self,
name = "My Vector sink",
in_sig = [(np.float32,self.sz)],
out_sig = None,
)
# event-related
self.drawgr = DrawGraphics()
self.drawgr.draw.connect(self.main.draw_fft_disp)
def work(self, input_items, output_items):
if(self.main.graphic_data == None):
data = np.fft.fftshift(input_items)
self.main.graphic_data = data[0][0].tolist()
self.drawgr.draw.emit()
return len(input_items)
class Radio(gr.top_block,QWidget):
def __init__(self,main):
self.main = main
gr.top_block.__init__(self, "Top Block")
QWidget.__init__(self)
self.fir_offset_f = 0
self.cw_offset = 0
self.blocks_multiply_const_volume = None
self.logpwrfft = None
self.audio_sink = None
self.osmosdr_source = None
self.analog_agc_cc = None
self.analog_pwr_squelch = None
self.analog_pwr_squelch_ssb = None
self.freq_xlating_fir_filter = None
self.low_pass_filter_am = None
self.low_pass_filter_fm = None
self.low_pass_filter_wfm = None
self.low_pass_filter_ssb = None
self.band_pass_filter_cw = None
self.cw_base = None
self.mode = None
self.sample_rate = None
self.audio_rate = None
self.gain_names = None
self.device_found = False
self.currently_configured_device = None
self.error = False
#self.if_offset_f = 0
def ntrp(self,x,xa,xb,ya,yb):
return (x-xa) * (yb-ya) / (xb-xa) + ya
def initialize_radio(self,config,run = False):
# intermediate frequency constants
self.if_sample_rate = int(240e3)
self.ssb_hi = 3000
self.ssb_lo = 100
self.hilbert_taps_ssb = 128
self.cw_base = config['cw_base']
self.cw_lo = -self.cw_base/2
self.cw_hi = self.cw_base/2
#print("*** entering initialize radio")
self.mode = self.main.mode_control.get_index()
#print("cw_base: %d" % self.cw_base)
self.cw_offset = 0
#self.sample_rate = self.main.sample_rate_control.get_value()
self.audio_rate = self.main.audio_rate_control.get_value()
self.main.offset_freq_control.set_range(self.audio_rate/2)
self.squelch_level = self.main.squelch_control.get_value()
self.update_offset_values()
self.device_name = self.main.device_control.get_value()
self.device_driver_name = self.main.device_dict[self.device_name]
self.configure_source_controls()
#if self.main.full_rebuild_flag or self.error:
self.build_blocks(config)
if not self.error:
self.connect_blocks(config)
self.main.full_rebuild_flag = False
def limit_offset_range(self,a,b):
f = abs(a)
sign = (-1,1)[a >= 0]
f = (f,b)[f > b]
return f * sign
def update_offset_values(self):
if self.mode != None:
self.offset_mode = self.main.offset_state_control.get_value()
if self.offset_mode:
f = self.main.offset_freq_control.get_value()
self.fir_offset_f = self.limit_offset_range(f,self.audio_rate/2)
else:
self.fir_offset_f = 0
def change_antennas(self,value):
if self.osmosdr_source != None:
self.osmosdr_source.set_antenna(value)
#print("changed to antenna: %s" % value)
def test_set_cw_offset(self):
offset = 0
if self.mode == self.main.MODE_CW_LSB or self.mode == self.main.MODE_CW_USB:
if self.mode == self.main.MODE_CW_LSB:
offset = -self.cw_base/2
else:
offset = self.cw_base/2
return offset
def compute_offset_f(self,front_end = True):
if self.audio_rate != None:
self.fir_offset_f = self.limit_offset_range(self.fir_offset_f,self.audio_rate/2)
if front_end:
return self.fir_offset_f - self.cw_offset
else:
return -(self.fir_offset_f + self.cw_offset)
def update_freq_xlating_fir_filter(self):
if self.freq_xlating_fir_filter != None:
f = self.compute_offset_f(False)
self.freq_xlating_fir_filter.set_center_freq(f)
# changing between USB and LSB requires changing the sign of a multiplication term
def create_usb_lsb_switch(self):
USB = self.mode == self.main.MODE_USB or self.mode == self.main.MODE_CW_USB
self.blocks_multiply_const_ssb = blocks.multiply_const_vff(((1,-1)[USB], ))
def create_update_freq_xlating_fir_filter(self):
if self.sample_rate != None:
self.update_offset_values()
if self.mode == self.main.MODE_WFM:
rate = self.if_sample_rate
else:
rate = self.audio_rate
fir_taps = firdes.complex_band_pass(1, rate, -rate/2, rate/2,rate/2)
if self.freq_xlating_fir_filter == None:
self.freq_xlating_fir_filter = filter.freq_xlating_fir_filter_ccc(1, (fir_taps), self.compute_offset_f(False), rate)
else:
self.freq_xlating_fir_filter.set_taps(fir_taps)
self.freq_xlating_fir_filter.set_center_freq(self.compute_offset_f(False))
def rebuild_filters(self,config,value = None):
if self.cw_base == None:
return
if value == None:
value = config['bw_mode']
am_bw = (8000,3000,2000)[value]
fm_bw = (8000,6000,4000)[value]
wfm_bw = (60e3,40e3,20e3)[value]
ssb_bw = (5000,2400,1800)[value]
cw_bw = (self.cw_base*2/3,self.cw_base/2,self.cw_base/3)[value]
am_taps = firdes.low_pass(
1, self.audio_rate, am_bw, 500, firdes.WIN_HAMMING, 6.76)
fm_taps = firdes.low_pass(
1, self.audio_rate, fm_bw, 500, firdes.WIN_HAMMING, 6.76)
wfm_taps = firdes.low_pass(
1, self.if_sample_rate, wfm_bw, 4e3, firdes.WIN_HAMMING, 6.76)
ssb_taps = firdes.low_pass(
1, self.audio_rate, ssb_bw, 100, firdes.WIN_HAMMING, 6.76)
#print("CW Base: %d - %d - %d" % (self.cw_base-cw_bw,self.cw_base + cw_bw,self.audio_rate))
cw_taps = firdes.band_pass(
1, self.audio_rate, self.cw_base-cw_bw,self.cw_base+cw_bw, 100, firdes.WIN_HAMMING, 6.76)
if self.low_pass_filter_am == None:
self.low_pass_filter_am = filter.fir_filter_ccf(1, am_taps)
else:
self.low_pass_filter_am.set_taps(am_taps)
if self.low_pass_filter_fm == None:
self.low_pass_filter_fm = filter.fir_filter_ccf(1, fm_taps)
else:
self.low_pass_filter_fm.set_taps(fm_taps)
if self.low_pass_filter_wfm == None:
self.low_pass_filter_wfm = filter.fir_filter_ccf(1, wfm_taps)
else:
self.low_pass_filter_wfm.set_taps(wfm_taps)
if self.low_pass_filter_ssb == None:
self.low_pass_filter_ssb = filter.fir_filter_fff(1, ssb_taps)
else:
self.low_pass_filter_ssb.set_taps(ssb_taps)
if self.band_pass_filter_cw == None:
self.band_pass_filter_cw = filter.fir_filter_fff(1, cw_taps)
else:
self.band_pass_filter_cw.set_taps(cw_taps)
# calculate gcd using Euclid's algorithm
def gcd(self,a, b):
while b:
a, b = b, a%b
return a
def compute_dec_interp(self,a,b):
a = int(a)
b = int(b)
gcd = self.gcd(a,b)
dec = a/gcd
interp = b/gcd
return dec,interp
# reference at https://github.com/osmocom/gr-osmosdr/blob/master/include/osmosdr/source.h
def configure_source_controls(self):
if self.osmosdr_source == None or self.device_driver_name != self.currently_configured_device:
self.osmosdr_source = osmosdr.source( args="numchan=1 %s" % self.device_driver_name)
self.currently_configured_device = self.device_driver_name
# this is required to allow a change in bandwidth
self.osmosdr_source.set_bandwidth(1)
self.gain_names = self.osmosdr_source.get_gain_names()
if len(self.gain_names) == 0:
# no device found
self.main.run_stop_button.setEnabled(False)
self.device_found = False
else:
self.device_found = True
self.main.set_agc_mode()
self.main.corr_ppm_control.set_value()
self.main.dc_offset_control.set_value()
self.main.iq_balance_control.set_value()
self.main.run_stop_button.setEnabled(True)
antennas = self.osmosdr_source.get_antennas()
self.main.antenna_control.set_content(antennas)
self.main.antenna_control.set_value()
rng = self.osmosdr_source.get_bandwidth_range().values()
if len(rng) == 0:
self.bandwidth_range = ["%d" % 10**x for x in range(3,9,1)]
else:
self.bandwidth_range = ["%d" % x for x in rng]
self.main.bandwidth_control.set_content(self.bandwidth_range)
self.main.bandwidth_control.enable(True)
self.main.bandwidth_label.setText("RF BW Hz")
self.main.bandwidth_control.set_value()
rng = self.osmosdr_source.get_sample_rates().values()
if len(rng) == 0:
rates = [int(x*10e6) for x in range(1,24,1)]
else:
rates = [x for x in rng]
all_rates = []
# add some slower rates not provided by the device
# example HackRF will operate at 1 MHz
# but only provides rates >= 8 MHz
for n in range(1,10,1):
r = n*10**6
if r >= rates[0]: break
all_rates.append(r)
all_rates += rates
self.sample_rates = ["%d" % x for x in all_rates]
self.main.sample_rate_control.set_content(self.sample_rates)
self.main.sample_rate_control.enable(True)
self.sample_rate = self.main.sample_rate_control.get_value()
if self.device_found:
self.osmosdr_source.set_sample_rate(self.sample_rate)
controls = [
self.main.gain_control_a,
self.main.gain_control_b,
self.main.gain_control_c,
self.main.gain_control_d
]
labels = [
self.main.gain_label_a,
self.main.gain_label_b,
self.main.gain_label_c,
self.main.gain_label_d
]
for n,control in enumerate(controls):
if n >= len(self.gain_names):
# not in use or out of range
control.visible(False)
labels[n].setVisible(False)
else:
# activate and set range
control.visible(True)
name = self.gain_names[n]
control.set_gain_name(name)
labels[n].setText("%s Gain" % name)
labels[n].setVisible(True)
grange = self.osmosdr_source.get_gain_range(name).values()
# get the beginning and end values
a,b = grange[1],grange[-1]
control.set_range(a,b)
control.set_value()
# initial setup
def build_blocks(self,config):
if not self.device_found:
return
self.error = False
fft_size = self.main.fft_size_control.get_value()
frame_rate = self.main.framerate_control.get_value()
average = self.main.average_control.get_value()
ssb_lo = self.ssb_lo
ssb_hi = self.ssb_hi
USB = self.mode == self.main.MODE_USB or self.mode == self.main.MODE_CW_USB
self.audio_dec_nrw = 1
self.dec_nrw, self.interp_nrw = self.compute_dec_interp(self.sample_rate,self.audio_rate)
self.audio_dec_wid = self.if_sample_rate / self.audio_rate
self.dec_wid, self.interp_wid = self.compute_dec_interp(self.sample_rate,self.if_sample_rate)
volume = .1
self.configure_source_controls()
self.create_update_freq_xlating_fir_filter()
self.analog_agc_cc = analog.agc2_cc(1e-1, 1e-2, 1.0, 1.0)
self.analog_agc_cc.set_max_gain(1)
self.analog_agc_ff = analog.agc2_ff(1e-1, 1e-2, 1.0, 1.0)
self.analog_agc_ff.set_max_gain(1)
self.rational_resampler_wid = filter.rational_resampler_ccc(
decimation=int(self.dec_wid),
interpolation=int(self.interp_wid),
taps=None,
fractional_bw=None,
)
self.rational_resampler_nrw = filter.rational_resampler_ccc(
decimation=int(self.dec_nrw),
interpolation=int(self.interp_nrw),
taps=None,
fractional_bw=None,
)
self.analog_pwr_squelch = analog.pwr_squelch_cc(self.squelch_level, 1e-4, 0, True)
self.analog_pwr_squelch_ssb = analog.pwr_squelch_ff(self.squelch_level, 1e-4, 0, True)
self.blocks_multiply = blocks.multiply_vcc(1)
self.blocks_complex_to_real = blocks.complex_to_real(1)
#self.rebuild_filters(config)
self.blocks_complex_to_mag_am = blocks.complex_to_mag(1)
self.analog_nbfm_rcv = analog.nbfm_rx(
audio_rate=self.audio_rate,
quad_rate=self.audio_rate,
tau=75e-6,
max_dev=6e3,
)
self.analog_wfm_rcv = analog.wfm_rcv(
quad_rate=self.if_sample_rate,
audio_decimation=self.audio_dec_wid,
)
self.hilbert_fc_2 = filter.hilbert_fc(self.hilbert_taps_ssb, firdes.WIN_HAMMING, 6.76)
self.hilbert_fc_1 = filter.hilbert_fc(self.hilbert_taps_ssb, firdes.WIN_HAMMING, 6.76)
self.blocks_multiply_ssb = blocks.multiply_vcc(1)
self.blocks_complex_to_float_ssb = blocks.complex_to_float(1)
self.create_usb_lsb_switch()
self.blocks_add = blocks.add_vff(1)
self.blocks_complex_to_real = blocks.complex_to_real(1)
self.blocks_complex_to_imag = blocks.complex_to_imag(1)
# this is the source for the FFT display's data
self.logpwrfft = logpwrfft.logpwrfft_c(
sample_rate=self.sample_rate,
fft_size=fft_size,
ref_scale=2,
frame_rate=frame_rate,
avg_alpha=average,
average=(average != 1),
)
# this is the main FFT display
self.fft_vector_sink = MyVectorSink(self.main,fft_size)
self.blocks_multiply_const_volume = blocks.multiply_const_vff((volume, ))
# only create this once
if self.audio_sink == None:
try:
self.audio_sink = audio.sink(self.audio_rate, config['audio_device'], True)
except Exception as e:
self.main.message_dialog("Audio Error","A problem has come up while accessing the audio system: %s" % e)
self.error = True
self.audio_sink = None
self.main.af_gain_control.set_value()
def connect_blocks(self,config):
self.disconnect_all()
if (self.error == True) or (self.device_found == False):
return
self.cw_offset = self.test_set_cw_offset()
self.main.set_agc_mode()
self.rebuild_filters(config)
self.connect((self.osmosdr_source, 0), (self.logpwrfft, 0))
self.connect((self.logpwrfft, 0), (self.fft_vector_sink, 0))
if self.mode == self.main.MODE_AM:
self.connect((self.osmosdr_source, 0), (self.rational_resampler_nrw, 0))
self.connect((self.rational_resampler_nrw, 0), (self.freq_xlating_fir_filter, 0))
self.connect((self.freq_xlating_fir_filter, 0), (self.low_pass_filter_am, 0))
self.connect((self.low_pass_filter_am, 0), (self.analog_pwr_squelch, 0))
self.connect((self.analog_pwr_squelch, 0), (self.analog_agc_cc, 0))
self.connect((self.analog_agc_cc, 0), (self.blocks_complex_to_mag_am, 0))
self.connect((self.blocks_complex_to_mag_am, 0), (self.blocks_multiply_const_volume, 0))
self.connect((self.blocks_multiply_const_volume, 0), (self.audio_sink, 0))
elif self.mode == self.main.MODE_FM:
self.connect((self.osmosdr_source, 0), (self.rational_resampler_nrw, 0))
self.connect((self.rational_resampler_nrw, 0), (self.freq_xlating_fir_filter, 0))
self.connect((self.freq_xlating_fir_filter, 0), (self.low_pass_filter_fm, 0))
self.connect((self.low_pass_filter_fm, 0), (self.analog_pwr_squelch, 0))
self.connect((self.analog_pwr_squelch, 0), (self.analog_agc_cc, 0))
self.connect((self.analog_agc_cc, 0), (self.analog_nbfm_rcv, 0))
self.connect((self.analog_nbfm_rcv, 0), (self.blocks_multiply_const_volume, 0))
self.connect((self.blocks_multiply_const_volume, 0), (self.audio_sink, 0))
elif self.mode == self.main.MODE_WFM:
self.connect((self.osmosdr_source, 0), (self.rational_resampler_wid, 0))
self.connect((self.rational_resampler_wid, 0), (self.freq_xlating_fir_filter, 0))
self.connect((self.freq_xlating_fir_filter, 0), (self.low_pass_filter_wfm, 0))
self.connect((self.low_pass_filter_wfm, 0), (self.analog_pwr_squelch, 0))
self.connect((self.analog_pwr_squelch, 0), (self.analog_agc_cc, 0))
self.connect((self.analog_agc_cc, 0), (self.analog_wfm_rcv, 0))
self.connect((self.analog_wfm_rcv, 0), (self.blocks_multiply_const_volume, 0))
self.connect((self.blocks_multiply_const_volume, 0), (self.audio_sink, 0))
elif self.mode == self.main.MODE_USB or self.mode == self.main.MODE_LSB:
self.create_usb_lsb_switch()
self.connect((self.osmosdr_source, 0), (self.rational_resampler_nrw, 0))
self.connect((self.rational_resampler_nrw, 0), (self.freq_xlating_fir_filter, 0))
self.connect((self.freq_xlating_fir_filter, 0), (self.analog_pwr_squelch, 0))
self.connect((self.analog_pwr_squelch, 0), (self.blocks_complex_to_float_ssb, 0))
self.connect((self.blocks_complex_to_float_ssb, 0), (self.hilbert_fc_1, 0))
self.connect((self.blocks_complex_to_float_ssb, 1), (self.hilbert_fc_2, 0))
self.connect((self.hilbert_fc_1, 0), (self.blocks_complex_to_real, 0))
self.connect((self.hilbert_fc_2, 0), (self.blocks_complex_to_imag, 0))
self.connect((self.blocks_complex_to_imag, 0), (self.blocks_multiply_const_ssb, 0))
self.connect((self.blocks_multiply_const_ssb, 0), (self.blocks_add, 1))
self.connect((self.blocks_complex_to_real, 0), (self.blocks_add, 0))
self.connect((self.blocks_add, 0), (self.low_pass_filter_ssb, 0))
self.connect((self.low_pass_filter_ssb, 0), (self.analog_pwr_squelch_ssb, 0))
self.connect((self.analog_pwr_squelch_ssb, 0), (self.analog_agc_ff, 0))
self.connect((self.analog_agc_ff, 0), (self.blocks_multiply_const_volume, 0))
self.connect((self.blocks_multiply_const_volume, 0), (self.audio_sink, 0))
elif self.mode == self.main.MODE_CW_USB or self.mode == self.main.MODE_CW_LSB:
self.create_usb_lsb_switch()
self.connect((self.osmosdr_source, 0), (self.rational_resampler_nrw, 0))
self.connect((self.rational_resampler_nrw, 0), (self.freq_xlating_fir_filter, 0))
self.connect((self.freq_xlating_fir_filter, 0), (self.analog_pwr_squelch, 0))
self.connect((self.analog_pwr_squelch, 0), (self.blocks_complex_to_float_ssb, 0))
self.connect((self.blocks_complex_to_float_ssb, 0), (self.hilbert_fc_1, 0))
self.connect((self.blocks_complex_to_float_ssb, 1), (self.hilbert_fc_2, 0))
self.connect((self.hilbert_fc_1, 0), (self.blocks_complex_to_real, 0))
self.connect((self.hilbert_fc_2, 0), (self.blocks_complex_to_imag, 0))
self.connect((self.blocks_complex_to_imag, 0), (self.blocks_multiply_const_ssb, 0))
self.connect((self.blocks_multiply_const_ssb, 0), (self.blocks_add, 1))
self.connect((self.blocks_complex_to_real, 0), (self.blocks_add, 0))
self.connect((self.blocks_add, 0), (self.band_pass_filter_cw, 0))
self.connect((self.band_pass_filter_cw, 0), (self.analog_pwr_squelch_ssb, 0))
self.connect((self.analog_pwr_squelch_ssb, 0), (self.analog_agc_ff, 0))
self.connect((self.analog_agc_ff, 0), (self.blocks_multiply_const_volume, 0))
self.connect((self.blocks_multiply_const_volume, 0), (self.audio_sink, 0))
else:
print("mode error -- no recognizable mode selected.")