-
Notifications
You must be signed in to change notification settings - Fork 3.1k
Description
import torch
model = torch.nn.Transformer(nhead=16, num_encoder_layers=12)
src = torch.rand(10, 32, 512)
tgt = torch.rand(20, 32, 512)
trace = torch.jit.trace(model, (src, tgt))
trace.save('transformer_traced.pt')Examples:
alexnet.pt.zip
alexnet_traced.pt.zip
binop.pt.zip
bert-base-uncased.pt.zip
blitz_cifar10_tutorial.zip
blitz_neural_networks_tutorial.zip
deeplabv3_scripted.ptl.zip
densenet161.pt.zip
densenet161_traced.pt.zip
enum_int_test.pt.zip
fasterrcnn_resnet50_fpn.pt.zip
fasterrcnn_resnet50_fpn.pt.zip
gpt2.pt.zip
inception_v3.pt.zip
inception_v3_traced.pt.zip
iv3_pertensor.zip
lite_real_sr.ptl.zip
LMModel1.zip
lnf_latest.pt.zip
m4-sWE-0.1B.script.pt.zip
mask_depthwise_conv.pt.zip
mask_model.pt.zip
mask_rcnn.pt.zip
mnist_linear_torchscript.zip
mobilefacenet.pth.zip
mobilenet_v2.pt.zip
mobilenet_v2_traced.pt.zip
model_dynamic_cpu.pt.zip
model_static_cpu.pt.zip
module_000007.pt.zip
nlf_l_multi.torchscript.zip
pedestrian_interaction_position_embedding.pt.zip
pedestrian_interaction_single_lstm.pt.zip
pyg_model.pt.zip
r3d_18.pt.zip
r3d_18_traced.pt.zip
rcnn.pt.zip
refine_model.pt.zip
resnet101.pt.zip
resnet101_traced.pt.zip
resnet18_quantized_cifar10.pt.zip
resnet50_pertensor.zip
resnext50_32x4d_fpn.pth.zip
rpn_model.pt.zip
shufflenet_v2_x1_0.pt.zip
shufflenet_v2_x1_0_traced.pt.zip
squeezenet1_1.pt.zip
squeezenet1_1_traced.pt.zip
squeezenet1_1_trt.pt.zip
ssdlite320_mobilenet_v3_large.pt.zip
stable_diffusion.zip
test.8bit.pth.zip
torchscript_resnet50_fp32.pth.zip
traced_fft.zip
traced_gpt2.pt.zip
traced_pseudo_quantized_model.pt.zip
transformer.pt.zip
transformer_traced.pt.zip
v1_lj_8000.jit.zip
wav2mel.pt.zip
yolo4_tiny.pt.zip
yolox_m.torchscript.pt.zip
model.ptl.zip
coco128-yolov8n-seg_output.torchscript.ptl.zip
TestSerialization.test_lstm.traced.pt.zip
TFModel_traced_eager_quant.pt.zip
unknown_type_name.pt.zip
Tools:
torch_jit_debug.py.zip
torch_jit_schemas.py.zip
Tasks:
-
prim::Loop -
prim::GetAttr -
_jit_pass_inline - Implicit inputs
- Nested graphs