-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreputation_system.py
461 lines (405 loc) · 24.4 KB
/
reputation_system.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import numpy
import matplotlib.pyplot as plt
import random
import seaborn as sns
import scipy.stats as st
from sci_analysis import analyze
import numpy as np
#from scipy.stats import uniform
#global variables, dictionairies, lists
subjective_metrics = {'accuracy': 0.0, 'availability': 0.0, 'validity':0.0}
subjective_metrics_weights1 = {'accuracy': 0.5, 'availability': 0.3, 'validity':0.2}
subjective_metrics_weights2 = {'accuracy': 0.1, 'availability': 0.1, 'validity':0.8}
#quality class metrics and target values
quality_class1 = {'availability':0.9, 'latency':0.2, 'noise':0.2}
quality_class2 = {'availability':0.5, 'latency':0.2, 'noise':0.3}
#quality class datasources
quality_class1_resources = ['datasource1', 'datasource2', 'datasource3', 'datasource4']
quality_class2_resources = ['datasource2', 'datasource3', 'datasource5', 'datasource6']
#quality class weights
quality_class1_weights = {'availability':0.5, 'latency':0.3, 'noise':0.2}
quality_class2_weights = {'availability':0.2, 'latency':0.7, 'noise':0.1}
#initialization of reputation scores
objective_old = {'datasource1':0.5, 'datasource2':0.5, 'datasource3':0.5, 'datasource4':0.5, 'datasource5':0.5, 'datasource6':0.5}
subjective_old = {'datasource1':0.5, 'datasource2':0.5, 'datasource3':0.5, 'datasource4':0.5, 'datasource5':0.5, 'datasource6':0.5}
reputation_old_providers = {'provider1':0.5, 'provider2':0.5, 'provider3':0.5, 'provider4':0.5, 'provider5':0.5, 'provider6':0.5}
reputation_old_federations = {'federation1': 0.5, 'federation2': 0.5}
reputation_old_products = {'product1': 0.8, 'product2': 0.8, 'product3': 0.8, 'product4': 0.8}
final_reputation_scores = {'datasource1':0.5, 'datasource2':0.5, 'datasource3':0.5, 'datasource4':0.5, 'datasource5':0.5, 'datasource6':0.5}
#global variables
lamda = 0.8
#product 1 and porduct 2 belongs to service class 1 and have quality class 1
product1 = {'datasource1':0.8, 'datasource2':0.6}
product2= {'datasource3':0.7, 'datasource4':0.9}
#product 3 and porduct 4 belongs to service class 2 and have quality class 2
product3 = {'datasource2':0.7, 'datasource3':0.6}
product4 = {'datasource5':0.8, 'datasource6':0.8}
#datasource 2 and datasource 3 contribute in the formation of multiple products that belong to different service/quqlity classes
#so they will have multiple values in the same monitoring period based on those quality classes
datasources = ['datasource1', 'datasource2', 'datasource3', 'datasource4', 'datasource5', 'datasource6']
#find the lier and diminish his weight of contribution
weights_of_contribution = {'datasource1':0.8, 'datasource2':0.8, 'datasource3':0.8, 'datasource4':0.8, 'datasource5':0.8, 'datasource6':0.8}
federation1 = {'datasource1': 0.7, 'datasource2': 0.5, 'datasource3': 0.7, 'datasource4':0.9}
federation2 = {'datasource2': 0.9, 'datasource3': 0.7, 'datasource5': 0.1, 'datasource6': 0.75}
#normalization works
def normalize(probs):
prob_factor = 1 / sum(probs)
return [prob_factor * p for p in probs]
#help function
def contains(diction1, diction2, key):
if (key in diction1) and (key in diction2):
return True
else:
return False
#help function
def add(self, key, value):
self[key] = value
#each transaction = monitoring period, one product participates. One product is composed of 2 datasources
#each datasource may or may not follow the same distribution with the other datasource of the same product
#the distribution declares the random values that the objective metrics, of the same quality class, will take
def choose_distribution(product, target_value, datasource, minmax):
#all datasources follow uniform good distribution with low deviation(=low noise, values near to mean value)
if (product == 'product1'): #first transaction = first monitoring period
if (minmax == 'min'):
actual_value = random.uniform(target_value-0.02, target_value +0.05) #good with low deviation
if (minmax == 'max'):
actual_value = random.uniform(target_value-0.05, target_value+0.01) #good with low deviation
#datasources follow different uniform distributions
if (product == 'product2' or product == 'product3'): #second transaction = second monitoring period
if (datasource == 'datasource1' or'datasource3' or'datasource5'):
if (minmax == 'min'):
actual_value = random.uniform(target_value-0.1, target_value + 0.1) #good with high deviation
if (minmax == 'max'):
actual_value = random.uniform(target_value-0.2, target_value+0.01) #good with high deviation
if (datasource == 'datasource2' or'datasource4' or'datasource6'):
if (minmax == 'min'):
actual_value = random.uniform(target_value-0.5, target_value + 0.01) #bad with low deviation
if (minmax == 'max'):
actual_value = random.uniform(target_value-0.01, target_value+0.05) #bad with low deviation
#all datasources follow uniform bad distribution with high deviation(=high noise, values dispare)
if (product == 'product4'): #forth transaction = forth monitoring period
if (minmax == 'min'):
actual_value = random.uniform(target_value-0.2, target_value+0.01) #bad with low deviation
if (minmax == 'max'):
actual_value = random.uniform(target_value-0.01, target_value + 0.2) #bad with low deviation
return actual_value;
#This function calculates the objective score of each resource of each quality class per monitoring period(=transaction period)
def objective(quality_class1, quality_class2, quality_class1_resources, quality_class2_resources, product):
Objective_scores = {}
#objective score of resources that belong to quality class 1
objective_scores_qualityclass1 = {}
for j in quality_class1_resources:
#case of good values with low deviation(=low noise=values near to mean)
temp_score_per_metric = []
#for i in quality_Class1:
for i in quality_class1:
#same for both service classes
min_max = {'availability':'min', 'latency':'max', 'noise':'max'}
target_value = quality_class1[i]
minmax = min_max[i]
actual_value = choose_distribution(product, target_value, j, minmax)
print ('the objective metric is: ', i)
print ('target value:', target_value)
print ('actual value:', actual_value)
print ('target is min or max? ', minmax)
if ((actual_value<target_value and minmax == 'min')or (actual_value>target_value and minmax == 'max')):
temp = 0;
temp_score_per_metric.append(temp)
else:
temp = 1;
temp_score_per_metric.append(temp)
print (temp_score_per_metric) #3 values per datasource as many as the objective metrics
#calculation of objective score per datasource
objectivescore = temp_score_per_metric[0]*quality_class1_weights['availability'] + temp_score_per_metric[1]*quality_class1_weights['latency'] + temp_score_per_metric[2]*quality_class1_weights['noise']
print ("The objective score for ", j, " is: ", objectivescore)
add(objective_scores_qualityclass1, j, objectivescore)
add(Objective_scores, j, objectivescore)
#objective score of resources that belong to quality class 2
objective_scores_qualityclass2 = {}
for j in quality_class2_resources:
#case of good values with low deviation(=low noise=values near to mean)
temp_score_per_metric = []
#for i in quality_Class2:
for i in quality_class2:
min_max = {'availability':'min', 'latency':'max', 'noise':'max'}
target_value = quality_class2[i]
minmax = min_max[i]
actual_value = choose_distribution(product, target_value, j, minmax)
print ('the objective metric is: ', i)
print ('target value:', target_value)
print ('actual value:', actual_value)
print ('target is min or max? ', minmax)
if ((actual_value<target_value and minmax == 'min')or (actual_value>target_value and minmax == 'max')):
temp = 0;
temp_score_per_metric.append(temp)
else:
temp = 1;
temp_score_per_metric.append(temp)
print (temp_score_per_metric) #3 values per datasource as many as the objective metrics
#calculation of objective score per datasource
objectivescore = temp_score_per_metric[0]*quality_class2_weights['availability'] + temp_score_per_metric[1]*quality_class2_weights['latency'] + temp_score_per_metric[2]*quality_class2_weights['noise']
print ("The objective score for ", j, " is: ", objectivescore)
add(objective_scores_qualityclass2, j, objectivescore)
add(Objective_scores, j, objectivescore)
#combination of objective scores in case that a datasource belongs to multiple quality classes
for n in datasources:
print (n)
if (contains(objective_scores_qualityclass1, objective_scores_qualityclass2, n)==True):
final_objective_score = (objective_scores_qualityclass1[n]+objective_scores_qualityclass2[n])/2
print (n, " belogns to multiple quality classes and its final reputation score is: ", final_objective_score)
add(Objective_scores, n, final_objective_score)
print ("objective scores for this monitoring period: ", Objective_scores)
return Objective_scores;
#one subjective profile per application type
#products that belong to the same application type have same subjective vector
#User specific --> per transaction --> use can select the weight and/or the subjective metrics
#Suppose- that users are always submit truthfull evaluations
def subjective_vector_choise(product):
if (product == "product1"):
for i in subjective_metrics:
#subjective_metric_value = random.uniform(0, 0.2)
subjective_metric_value = random.uniform(0.8, 10)
add(subjective_metrics, i, subjective_metric_value)
if (product == "product2" or product == "product3"):
for i in subjective_metrics:
subjective_metric_value = random.uniform(0.2, 0.8)
add(subjective_metrics, i, subjective_metric_value)
if (product == "product4"):
for i in subjective_metrics:
subjective_metric_value = random.uniform(0, 0.2)
add(subjective_metrics, i, subjective_metric_value)
print ("subjective metrics for transaction of product ", product, ":", subjective_metrics)
return subjective_metrics;
def subjective(product, subjective_metrics):
subjective_score = 0
if(product == "product1" or product == "product2"):
for i in subjective_metrics:
subjective_score = subjective_score + subjective_metrics[i]*subjective_metrics_weights1[i]
if(product == "product3" or product == "product4"):
for i in subjective_metrics:
subjective_score = subjective_score + subjective_metrics[i]*subjective_metrics_weights2[i]
print ("final subjective score of ", product, ":", subjective_score)
return subjective_score;
def reputation_update_datasources(objective_scores, subjective_score, product):
#datasource 2 and datasource 3 contribute in the formation of multiple products that belong to different services/quality classes
#so they will have multiple values in the same monitoring period based on those quality classes
#update objective score by taking into account the old values
for i in objective_scores:
objective_updated = lamda*objective_old[i] + (1-lamda)*objective_scores[i]
add(objective_old, i, objective_updated)
#update subjective score by taking into account the old values
if(product == 'product1'):
for i in product1:
print("......................", i)
subjective_updated = lamda*subjective_old[i] + (1-lamda)*subjective_score
add(subjective_old, i, subjective_updated)
#final reputation score after the combination of subjective and objective of the datasources
#where the objective_old and the subjective_old dictionaries are now updated
if (((subjective_score - objective_scores[i]) > 0.4) or ((objective_scores[i]- subjective_score) > 0.4)):
#if (((subjective_score - objective_scores[i]) < 0.15) or ((objective_scores[i]- subjective_score) < 0.15)):
if (weights_of_contribution[i]>0.15):
#if (weights_of_contribution[i]<0.85):
weights_of_contribution[i] -=0.1
#weights_of_contribution[i] +=0.1
final_reputation = weights_of_contribution[i]*objective_old[i] + (1-weights_of_contribution[i])*subjective_old[i]
add(final_reputation_scores, i, final_reputation)
else:
final_reputation = weights_of_contribution[i]*objective_old[i] + (1-weights_of_contribution[i])*subjective_old[i]
add(final_reputation_scores, i, final_reputation)
if(product == 'product2'):
for i in product2:
print("......................", i)
subjective_updated = lamda*subjective_old[i] + (1-lamda)*subjective_score
print (subjective_updated)
add(subjective_old, i, subjective_updated)
#final reputation score after the combination of subjective and objective
if (((subjective_score - objective_scores[i]) > 0.4) or ((objective_scores[i]- subjective_score) > 0.4)):
if (weights_of_contribution[i]>0.15):
weights_of_contribution[i] -=0.1
final_reputation = weights_of_contribution[i]*objective_old[i] + (1-weights_of_contribution[i])*subjective_old[i]
add(final_reputation_scores, i, final_reputation)
if (((subjective_score - objective_scores[i]) < 0.15) or ((objective_scores[i]- subjective_score) < 0.15)):
if (weights_of_contribution[i]<0.85):
weights_of_contribution[i] +=0.1
final_reputation = weights_of_contribution[i]*objective_old[i] + (1-weights_of_contribution[i])*subjective_old[i]
add(final_reputation_scores, i, final_reputation)
else:
final_reputation = weights_of_contribution[i]*objective_old[i] + (1-weights_of_contribution[i])*subjective_old[i]
add(final_reputation_scores, i, final_reputation)
if(product == 'product3'):
for i in product3:
print("......................", i)
subjective_updated = lamda*subjective_old[i] + (1-lamda)*subjective_score
add(subjective_old, i, subjective_updated)
#final reputation score after the combination of subjective and objective
if (((subjective_score - objective_scores[i]) > 0.4) or ((objective_scores[i]- subjective_score) > 0.4)):
if (weights_of_contribution[i]>0.15):
weights_of_contribution[i] -=0.1
final_reputation = weights_of_contribution[i]*objective_old[i] + (1-weights_of_contribution[i])*subjective_old[i]
add(final_reputation_scores, i, final_reputation)
if (((subjective_score - objective_scores[i]) < 0.15) or ((objective_scores[i]- subjective_score) < 0.15)):
if (weights_of_contribution[i]<0.85):
weights_of_contribution[i] +=0.1
final_reputation = weights_of_contribution[i]*objective_old[i] + (1-weights_of_contribution[i])*subjective_old[i]
add(final_reputation_scores, i, final_reputation)
else:
final_reputation = weights_of_contribution[i]*objective_old[i] + (1-weights_of_contribution[i])*subjective_old[i]
add(final_reputation_scores, i, final_reputation)
if(product == 'product4'):
for i in product4:
print("......................", i)
subjective_updated = lamda*subjective_old[i] + (1-lamda)*subjective_score
print (subjective_updated)
add(subjective_old, i, subjective_updated)
#final reputation score after the combination of subjective and objective
if (((subjective_score - objective_scores[i]) > 0.4) or ((objective_scores[i]- subjective_score) > 0.4)):
if (weights_of_contribution[i]>0.15):
weights_of_contribution[i] -=0.1
final_reputation = weights_of_contribution[i]*objective_old[i] + (1-weights_of_contribution[i])*subjective_old[i]
add(final_reputation_scores, i, final_reputation)
if (((subjective_score - objective_scores[i]) < 0.15) or ((objective_scores[i]- subjective_score) < 0.15)):
if (weights_of_contribution[i]<0.85):
weights_of_contribution[i] +=0.1
final_reputation = weights_of_contribution[i]*objective_old[i] + (1-weights_of_contribution[i])*subjective_old[i]
add(final_reputation_scores, i, final_reputation)
else:
final_reputation = weights_of_contribution[i]*objective_old[i] + (1-weights_of_contribution[i])*subjective_old[i]
add(final_reputation_scores, i, final_reputation)
print ('weights: ', weights_of_contribution)
print ('final reputation scores: ', final_reputation_scores)
return final_reputation_scores;
#provider 1 --> datasource1, provider2--> datasource2, etc
#so, in this case updated reputation of datasource = updated reputation of provider
#datasources taking into account the previous old value so there is no need to taking into acount also here
def reputation_update_providers(final_reputation):
for i in final_reputation:
reputation_old_providers = final_reputation
return reputation_old_providers;
#federation 1 --> provider1,2,3,4 --> datasource1,2,3,4
#federation 2 --> provider2,3,5,6 --> datasource2,3,5,6
def reputation_update_federations(final_reputation):
current_federation1 = 0
current_federation2 = 0
for i in final_reputation:
if (contains(final_reputation, federation1, i) == True):
current_federation1 = current_federation1 + final_reputation[i]*federation1[i]
if (contains(final_reputation, federation2, i) == True):
current_federation2 = current_federation2 + final_reputation[i]*federation2[i]
#there is no need to see the old value of the federation as the datasources already taking into account the old values
final_federation1 = current_federation1 / sum(federation1.values())
reputation_old_federations['federation1'] = final_federation1
final_federation2 = current_federation2 / sum(federation2.values())
reputation_old_federations['federation2'] = final_federation2
return reputation_old_federations;
#update current product of the traction and the affected ones that may have one or multiple common datasources
def reputation_update_products(final_reputation):
current_product1 =0
for i in final_reputation:
if(contains(final_reputation, product1, i)== True):
current_product1 = current_product1 + final_reputation[i]*product1[i]
final_product1 = current_product1/sum(product1.values())
reputation_old_products['product1']=final_product1
current_product2=0
for i in final_reputation:
if(contains(final_reputation, product2, i)== True):
current_product2 = current_product2 + final_reputation[i]*product2[i]
final_product2 = current_product2/sum(product2.values())
reputation_old_products['product2']=final_product2
current_product3=0
for i in final_reputation:
if(contains(final_reputation, product3, i)== True):
current_product3 = current_product3 + final_reputation[i]*product3[i]
final_product3 = current_product3/sum(product3.values())
reputation_old_products['product3']=final_product3
current_product4=0
for i in final_reputation:
if(contains(final_reputation, product4, i)== True):
current_product4 = current_product4 + final_reputation[i]*product4[i]
final_product4 = current_product4/sum(product4.values())
reputation_old_products['product4']=final_product4
return reputation_old_products;
def reputation(product):
subjective_metrics_per_transaction = subjective_vector_choise(product)
product_subjective = subjective(product, subjective_metrics_per_transaction)
#assumption: where monitoring period = transaction period
objective_for_monitoring_period = objective(quality_class1, quality_class2, quality_class1_resources, quality_class2_resources, product)
final_Reputation_per_datasource =reputation_update_datasources(objective_for_monitoring_period, product_subjective, product)
reputation_update_providers(final_Reputation_per_datasource)
reputation_update_federations(final_Reputation_per_datasource)
reputation_update_products(final_Reputation_per_datasource)
def main():
Product_counters = [0,0,0,0]
products = ['product1', 'product2', 'product3', 'product4']
transactions = ['product1', 'product2', 'product3', 'product4']
product1_repuration = []
products1_time = []
weights_of_datasource1 = []
weights_of_datasource2 = []
for i in range (0, 40):
print ("-----------------------------------------------Transaction",i,"----------------------------------------------------------------------------")
answer = input("Do you want a product of service class 1 or service class 2? ")
print (reputation_old_products)
if (answer == '1'):
class1 = [reputation_old_products['product1'], reputation_old_products['product2']]
class1_products = ['product1', 'product2']
normalization_of_products_reputation = normalize(class1)
print(normalization_of_products_reputation)
choice = random.choices(class1_products, normalization_of_products_reputation)
print(choice)
if (choice[0] == "product1"):
Product_counters[0] += 1
if (choice[0] == "product2"):
Product_counters[1] += 1
reputation(choice[0])
#Graphical representation of the reputation scores per product
if (choice[0] == 'product1'):
product1_repuration.append(reputation_old_products[choice[0]])
products1_time.append(i)
for j in product1:
if (j == 'datasource1'):
weights_of_datasource1.append(weights_of_contribution[j])
if (j == 'datasource2'):
weights_of_datasource2.append(weights_of_contribution[j])
if (answer == '2'):
class2 = [reputation_old_products['product3'], reputation_old_products['product4']]
class2_products = ['product3', 'product4']
normalization_of_products_reputation = normalize(class2)
print(normalization_of_products_reputation)
choice = random.choices(class2_products, normalization_of_products_reputation)
print(choice)
if (choice[0] == "product3"):
Product_counters[2] += 1
if (choice[0] == "product4"):
Product_counters[3] += 1
reputation(choice[0])
sns.set_style("whitegrid")
plt.figure(figsize=(12,6))
plt.xlabel('weights')
plt.ylabel('datasources')
plt.bar(datasources, weights_of_contribution.values())
plt.show()
print ("final weights", weights_of_contribution)
print ("final counters", Product_counters)
sns.set_style("whitegrid")
plt.figure(figsize=(12,6))
plt.xlabel('transactions - products')
plt.ylabel('times that a product is being choosen')
plt.bar(products, Product_counters)
plt.show()
print ("repuation score for product 1 in each transaction", product1_repuration)
plt.xlabel('transaction that product 1 is being choosen')
plt.ylabel('reputation score per transaction')
plt.bar(products1_time, product1_repuration)
plt.show()
print ("weights of datasource1 in case that provider1 is lying", weights_of_datasource1)
plt.xlabel('transactions that datasource 1 participates')
plt.ylabel('weight per transaction')
plt.bar(products1_time, weights_of_datasource1)
plt.show()
print ("weights of datasource2 in case that provider 2 is lying", weights_of_datasource2)
plt.xlabel('transactions that datasource 2 participates')
plt.ylabel('weight per transaction')
plt.bar(products1_time, weights_of_datasource2)
plt.show()
if __name__ == "__main__":
main()